Multi-Branch Feature Alignment Network for Misaligned and Occluded Person Re-Identification
As a pivotal computer vision technique, person re-identification (re-ID) assumes a paramount role in bolstering public security. During the process of computing feature similarities among person images, misaligned and occluded body parts may impede accurate identity retrieval. To mitigate these chal...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.175445-175457 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 175457 |
---|---|
container_issue | |
container_start_page | 175445 |
container_title | IEEE access |
container_volume | 12 |
creator | Lyu, Chunyan Huang, Hai Zhang, Lixi Zhu, Wenting Wang, Zhengyang Wang, Kejun Jiao, Caidong |
description | As a pivotal computer vision technique, person re-identification (re-ID) assumes a paramount role in bolstering public security. During the process of computing feature similarities among person images, misaligned and occluded body parts may impede accurate identity retrieval. To mitigate these challenges, we introduce a Multi-Branch Feature Alignment Network (MBFA) comprising three distinct deep neural network branches. Primarily, the global feature branch is tailored to extract comprehensive features. Subsequently, the pose alignment branch is formulated to acquire segmented features via a specific feature-weighted fusion strategy. Finally, the semantic alignment branch is devised to derive high-order semantic features at a pixel level, enabling precise localization of visible parts in occluded pedestrians and focusing similarity computations on these regions. The integration of multi-scale feature information synergistically complements one another, resulting in feature alignment that augments the robustness and discrimination capabilities of the entire network. Consequently, MBFA adeptly mitigates the interferences caused by misalignment and occlusion. Across three prominent re-ID datasets and an occluded re-ID dataset, experimental results unequivocally affirm the superiority of our proposed methodology over existing state-of-the-art methods. |
doi_str_mv | 10.1109/ACCESS.2024.3492312 |
format | Article |
fullrecord | <record><control><sourceid>doaj_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10745484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10745484</ieee_id><doaj_id>oai_doaj_org_article_06e424fa114c491d90ecf51544287369</doaj_id><sourcerecordid>oai_doaj_org_article_06e424fa114c491d90ecf51544287369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-4a8e4d0c5c5e836847f6447f9c5881edd0bd02ddab97f25f3b03d9fb55423cd33</originalsourceid><addsrcrecordid>eNpNkM1OwkAUhRujiQR5Al3MCxTnt51ZYgNKAmJEVy4m05k7OFhaMy0xvr1FiPEu7s-5-c7iJMk1wWNCsLqdFMV0vR5TTPmYcUUZoWfJgJJMpUyw7PzffpmM2naL-5K9JPJB8rbcV11I76Kp7Tuagen2EdCkCpt6B3WHHqH7auIH8k1Ey9CawwMcMrVDK2urveuPJ4htU6NnSOeuZ4IP1nShqa-SC2-qFkanOUxeZ9OX4iFdrO7nxWSRWpqRLuVGAnfYCitAskzy3Ge8b8oKKQk4h0uHqXOmVLmnwrMSM6d8KQSnzDrGhsn86Osas9WfMexM_NaNCfpXaOJGm9gFW4HGGXDKvSGEW66IUxisF0RwTmXOMtV7saOXjU3bRvB_fgTrQ9z6GLc-xK1PcffUzZEKAPCPyLngkrMfrkt7xQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-Branch Feature Alignment Network for Misaligned and Occluded Person Re-Identification</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lyu, Chunyan ; Huang, Hai ; Zhang, Lixi ; Zhu, Wenting ; Wang, Zhengyang ; Wang, Kejun ; Jiao, Caidong</creator><creatorcontrib>Lyu, Chunyan ; Huang, Hai ; Zhang, Lixi ; Zhu, Wenting ; Wang, Zhengyang ; Wang, Kejun ; Jiao, Caidong</creatorcontrib><description>As a pivotal computer vision technique, person re-identification (re-ID) assumes a paramount role in bolstering public security. During the process of computing feature similarities among person images, misaligned and occluded body parts may impede accurate identity retrieval. To mitigate these challenges, we introduce a Multi-Branch Feature Alignment Network (MBFA) comprising three distinct deep neural network branches. Primarily, the global feature branch is tailored to extract comprehensive features. Subsequently, the pose alignment branch is formulated to acquire segmented features via a specific feature-weighted fusion strategy. Finally, the semantic alignment branch is devised to derive high-order semantic features at a pixel level, enabling precise localization of visible parts in occluded pedestrians and focusing similarity computations on these regions. The integration of multi-scale feature information synergistically complements one another, resulting in feature alignment that augments the robustness and discrimination capabilities of the entire network. Consequently, MBFA adeptly mitigates the interferences caused by misalignment and occlusion. Across three prominent re-ID datasets and an occluded re-ID dataset, experimental results unequivocally affirm the superiority of our proposed methodology over existing state-of-the-art methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3492312</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>feature alignment ; Feature extraction ; feature-weighted fusion ; Hip ; Identification of persons ; Legged locomotion ; Pedestrians ; Person re-identification ; Pixel ; pixel level ; Pose estimation ; Semantics ; Surveillance ; Torso ; Wrist</subject><ispartof>IEEE access, 2024, Vol.12, p.175445-175457</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2416-630X ; 0009-0004-8451-0784 ; 0009-0008-7130-7786</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10745484$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Lyu, Chunyan</creatorcontrib><creatorcontrib>Huang, Hai</creatorcontrib><creatorcontrib>Zhang, Lixi</creatorcontrib><creatorcontrib>Zhu, Wenting</creatorcontrib><creatorcontrib>Wang, Zhengyang</creatorcontrib><creatorcontrib>Wang, Kejun</creatorcontrib><creatorcontrib>Jiao, Caidong</creatorcontrib><title>Multi-Branch Feature Alignment Network for Misaligned and Occluded Person Re-Identification</title><title>IEEE access</title><addtitle>Access</addtitle><description>As a pivotal computer vision technique, person re-identification (re-ID) assumes a paramount role in bolstering public security. During the process of computing feature similarities among person images, misaligned and occluded body parts may impede accurate identity retrieval. To mitigate these challenges, we introduce a Multi-Branch Feature Alignment Network (MBFA) comprising three distinct deep neural network branches. Primarily, the global feature branch is tailored to extract comprehensive features. Subsequently, the pose alignment branch is formulated to acquire segmented features via a specific feature-weighted fusion strategy. Finally, the semantic alignment branch is devised to derive high-order semantic features at a pixel level, enabling precise localization of visible parts in occluded pedestrians and focusing similarity computations on these regions. The integration of multi-scale feature information synergistically complements one another, resulting in feature alignment that augments the robustness and discrimination capabilities of the entire network. Consequently, MBFA adeptly mitigates the interferences caused by misalignment and occlusion. Across three prominent re-ID datasets and an occluded re-ID dataset, experimental results unequivocally affirm the superiority of our proposed methodology over existing state-of-the-art methods.</description><subject>feature alignment</subject><subject>Feature extraction</subject><subject>feature-weighted fusion</subject><subject>Hip</subject><subject>Identification of persons</subject><subject>Legged locomotion</subject><subject>Pedestrians</subject><subject>Person re-identification</subject><subject>Pixel</subject><subject>pixel level</subject><subject>Pose estimation</subject><subject>Semantics</subject><subject>Surveillance</subject><subject>Torso</subject><subject>Wrist</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkM1OwkAUhRujiQR5Al3MCxTnt51ZYgNKAmJEVy4m05k7OFhaMy0xvr1FiPEu7s-5-c7iJMk1wWNCsLqdFMV0vR5TTPmYcUUZoWfJgJJMpUyw7PzffpmM2naL-5K9JPJB8rbcV11I76Kp7Tuagen2EdCkCpt6B3WHHqH7auIH8k1Ey9CawwMcMrVDK2urveuPJ4htU6NnSOeuZ4IP1nShqa-SC2-qFkanOUxeZ9OX4iFdrO7nxWSRWpqRLuVGAnfYCitAskzy3Ge8b8oKKQk4h0uHqXOmVLmnwrMSM6d8KQSnzDrGhsn86Osas9WfMexM_NaNCfpXaOJGm9gFW4HGGXDKvSGEW66IUxisF0RwTmXOMtV7saOXjU3bRvB_fgTrQ9z6GLc-xK1PcffUzZEKAPCPyLngkrMfrkt7xQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lyu, Chunyan</creator><creator>Huang, Hai</creator><creator>Zhang, Lixi</creator><creator>Zhu, Wenting</creator><creator>Wang, Zhengyang</creator><creator>Wang, Kejun</creator><creator>Jiao, Caidong</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2416-630X</orcidid><orcidid>https://orcid.org/0009-0004-8451-0784</orcidid><orcidid>https://orcid.org/0009-0008-7130-7786</orcidid></search><sort><creationdate>2024</creationdate><title>Multi-Branch Feature Alignment Network for Misaligned and Occluded Person Re-Identification</title><author>Lyu, Chunyan ; Huang, Hai ; Zhang, Lixi ; Zhu, Wenting ; Wang, Zhengyang ; Wang, Kejun ; Jiao, Caidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-4a8e4d0c5c5e836847f6447f9c5881edd0bd02ddab97f25f3b03d9fb55423cd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>feature alignment</topic><topic>Feature extraction</topic><topic>feature-weighted fusion</topic><topic>Hip</topic><topic>Identification of persons</topic><topic>Legged locomotion</topic><topic>Pedestrians</topic><topic>Person re-identification</topic><topic>Pixel</topic><topic>pixel level</topic><topic>Pose estimation</topic><topic>Semantics</topic><topic>Surveillance</topic><topic>Torso</topic><topic>Wrist</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyu, Chunyan</creatorcontrib><creatorcontrib>Huang, Hai</creatorcontrib><creatorcontrib>Zhang, Lixi</creatorcontrib><creatorcontrib>Zhu, Wenting</creatorcontrib><creatorcontrib>Wang, Zhengyang</creatorcontrib><creatorcontrib>Wang, Kejun</creatorcontrib><creatorcontrib>Jiao, Caidong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyu, Chunyan</au><au>Huang, Hai</au><au>Zhang, Lixi</au><au>Zhu, Wenting</au><au>Wang, Zhengyang</au><au>Wang, Kejun</au><au>Jiao, Caidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Branch Feature Alignment Network for Misaligned and Occluded Person Re-Identification</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>175445</spage><epage>175457</epage><pages>175445-175457</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>As a pivotal computer vision technique, person re-identification (re-ID) assumes a paramount role in bolstering public security. During the process of computing feature similarities among person images, misaligned and occluded body parts may impede accurate identity retrieval. To mitigate these challenges, we introduce a Multi-Branch Feature Alignment Network (MBFA) comprising three distinct deep neural network branches. Primarily, the global feature branch is tailored to extract comprehensive features. Subsequently, the pose alignment branch is formulated to acquire segmented features via a specific feature-weighted fusion strategy. Finally, the semantic alignment branch is devised to derive high-order semantic features at a pixel level, enabling precise localization of visible parts in occluded pedestrians and focusing similarity computations on these regions. The integration of multi-scale feature information synergistically complements one another, resulting in feature alignment that augments the robustness and discrimination capabilities of the entire network. Consequently, MBFA adeptly mitigates the interferences caused by misalignment and occlusion. Across three prominent re-ID datasets and an occluded re-ID dataset, experimental results unequivocally affirm the superiority of our proposed methodology over existing state-of-the-art methods.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3492312</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2416-630X</orcidid><orcidid>https://orcid.org/0009-0004-8451-0784</orcidid><orcidid>https://orcid.org/0009-0008-7130-7786</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.175445-175457 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10745484 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | feature alignment Feature extraction feature-weighted fusion Hip Identification of persons Legged locomotion Pedestrians Person re-identification Pixel pixel level Pose estimation Semantics Surveillance Torso Wrist |
title | Multi-Branch Feature Alignment Network for Misaligned and Occluded Person Re-Identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A30%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Branch%20Feature%20Alignment%20Network%20for%20Misaligned%20and%20Occluded%20Person%20Re-Identification&rft.jtitle=IEEE%20access&rft.au=Lyu,%20Chunyan&rft.date=2024&rft.volume=12&rft.spage=175445&rft.epage=175457&rft.pages=175445-175457&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3492312&rft_dat=%3Cdoaj_ieee_%3Eoai_doaj_org_article_06e424fa114c491d90ecf51544287369%3C/doaj_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10745484&rft_doaj_id=oai_doaj_org_article_06e424fa114c491d90ecf51544287369&rfr_iscdi=true |