Multi-Branch Feature Alignment Network for Misaligned and Occluded Person Re-Identification

As a pivotal computer vision technique, person re-identification (re-ID) assumes a paramount role in bolstering public security. During the process of computing feature similarities among person images, misaligned and occluded body parts may impede accurate identity retrieval. To mitigate these chal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.175445-175457
Hauptverfasser: Lyu, Chunyan, Huang, Hai, Zhang, Lixi, Zhu, Wenting, Wang, Zhengyang, Wang, Kejun, Jiao, Caidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175457
container_issue
container_start_page 175445
container_title IEEE access
container_volume 12
creator Lyu, Chunyan
Huang, Hai
Zhang, Lixi
Zhu, Wenting
Wang, Zhengyang
Wang, Kejun
Jiao, Caidong
description As a pivotal computer vision technique, person re-identification (re-ID) assumes a paramount role in bolstering public security. During the process of computing feature similarities among person images, misaligned and occluded body parts may impede accurate identity retrieval. To mitigate these challenges, we introduce a Multi-Branch Feature Alignment Network (MBFA) comprising three distinct deep neural network branches. Primarily, the global feature branch is tailored to extract comprehensive features. Subsequently, the pose alignment branch is formulated to acquire segmented features via a specific feature-weighted fusion strategy. Finally, the semantic alignment branch is devised to derive high-order semantic features at a pixel level, enabling precise localization of visible parts in occluded pedestrians and focusing similarity computations on these regions. The integration of multi-scale feature information synergistically complements one another, resulting in feature alignment that augments the robustness and discrimination capabilities of the entire network. Consequently, MBFA adeptly mitigates the interferences caused by misalignment and occlusion. Across three prominent re-ID datasets and an occluded re-ID dataset, experimental results unequivocally affirm the superiority of our proposed methodology over existing state-of-the-art methods.
doi_str_mv 10.1109/ACCESS.2024.3492312
format Article
fullrecord <record><control><sourceid>doaj_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10745484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10745484</ieee_id><doaj_id>oai_doaj_org_article_06e424fa114c491d90ecf51544287369</doaj_id><sourcerecordid>oai_doaj_org_article_06e424fa114c491d90ecf51544287369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-4a8e4d0c5c5e836847f6447f9c5881edd0bd02ddab97f25f3b03d9fb55423cd33</originalsourceid><addsrcrecordid>eNpNkM1OwkAUhRujiQR5Al3MCxTnt51ZYgNKAmJEVy4m05k7OFhaMy0xvr1FiPEu7s-5-c7iJMk1wWNCsLqdFMV0vR5TTPmYcUUZoWfJgJJMpUyw7PzffpmM2naL-5K9JPJB8rbcV11I76Kp7Tuagen2EdCkCpt6B3WHHqH7auIH8k1Ey9CawwMcMrVDK2urveuPJ4htU6NnSOeuZ4IP1nShqa-SC2-qFkanOUxeZ9OX4iFdrO7nxWSRWpqRLuVGAnfYCitAskzy3Ge8b8oKKQk4h0uHqXOmVLmnwrMSM6d8KQSnzDrGhsn86Osas9WfMexM_NaNCfpXaOJGm9gFW4HGGXDKvSGEW66IUxisF0RwTmXOMtV7saOXjU3bRvB_fgTrQ9z6GLc-xK1PcffUzZEKAPCPyLngkrMfrkt7xQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-Branch Feature Alignment Network for Misaligned and Occluded Person Re-Identification</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lyu, Chunyan ; Huang, Hai ; Zhang, Lixi ; Zhu, Wenting ; Wang, Zhengyang ; Wang, Kejun ; Jiao, Caidong</creator><creatorcontrib>Lyu, Chunyan ; Huang, Hai ; Zhang, Lixi ; Zhu, Wenting ; Wang, Zhengyang ; Wang, Kejun ; Jiao, Caidong</creatorcontrib><description>As a pivotal computer vision technique, person re-identification (re-ID) assumes a paramount role in bolstering public security. During the process of computing feature similarities among person images, misaligned and occluded body parts may impede accurate identity retrieval. To mitigate these challenges, we introduce a Multi-Branch Feature Alignment Network (MBFA) comprising three distinct deep neural network branches. Primarily, the global feature branch is tailored to extract comprehensive features. Subsequently, the pose alignment branch is formulated to acquire segmented features via a specific feature-weighted fusion strategy. Finally, the semantic alignment branch is devised to derive high-order semantic features at a pixel level, enabling precise localization of visible parts in occluded pedestrians and focusing similarity computations on these regions. The integration of multi-scale feature information synergistically complements one another, resulting in feature alignment that augments the robustness and discrimination capabilities of the entire network. Consequently, MBFA adeptly mitigates the interferences caused by misalignment and occlusion. Across three prominent re-ID datasets and an occluded re-ID dataset, experimental results unequivocally affirm the superiority of our proposed methodology over existing state-of-the-art methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3492312</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>feature alignment ; Feature extraction ; feature-weighted fusion ; Hip ; Identification of persons ; Legged locomotion ; Pedestrians ; Person re-identification ; Pixel ; pixel level ; Pose estimation ; Semantics ; Surveillance ; Torso ; Wrist</subject><ispartof>IEEE access, 2024, Vol.12, p.175445-175457</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2416-630X ; 0009-0004-8451-0784 ; 0009-0008-7130-7786</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10745484$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Lyu, Chunyan</creatorcontrib><creatorcontrib>Huang, Hai</creatorcontrib><creatorcontrib>Zhang, Lixi</creatorcontrib><creatorcontrib>Zhu, Wenting</creatorcontrib><creatorcontrib>Wang, Zhengyang</creatorcontrib><creatorcontrib>Wang, Kejun</creatorcontrib><creatorcontrib>Jiao, Caidong</creatorcontrib><title>Multi-Branch Feature Alignment Network for Misaligned and Occluded Person Re-Identification</title><title>IEEE access</title><addtitle>Access</addtitle><description>As a pivotal computer vision technique, person re-identification (re-ID) assumes a paramount role in bolstering public security. During the process of computing feature similarities among person images, misaligned and occluded body parts may impede accurate identity retrieval. To mitigate these challenges, we introduce a Multi-Branch Feature Alignment Network (MBFA) comprising three distinct deep neural network branches. Primarily, the global feature branch is tailored to extract comprehensive features. Subsequently, the pose alignment branch is formulated to acquire segmented features via a specific feature-weighted fusion strategy. Finally, the semantic alignment branch is devised to derive high-order semantic features at a pixel level, enabling precise localization of visible parts in occluded pedestrians and focusing similarity computations on these regions. The integration of multi-scale feature information synergistically complements one another, resulting in feature alignment that augments the robustness and discrimination capabilities of the entire network. Consequently, MBFA adeptly mitigates the interferences caused by misalignment and occlusion. Across three prominent re-ID datasets and an occluded re-ID dataset, experimental results unequivocally affirm the superiority of our proposed methodology over existing state-of-the-art methods.</description><subject>feature alignment</subject><subject>Feature extraction</subject><subject>feature-weighted fusion</subject><subject>Hip</subject><subject>Identification of persons</subject><subject>Legged locomotion</subject><subject>Pedestrians</subject><subject>Person re-identification</subject><subject>Pixel</subject><subject>pixel level</subject><subject>Pose estimation</subject><subject>Semantics</subject><subject>Surveillance</subject><subject>Torso</subject><subject>Wrist</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkM1OwkAUhRujiQR5Al3MCxTnt51ZYgNKAmJEVy4m05k7OFhaMy0xvr1FiPEu7s-5-c7iJMk1wWNCsLqdFMV0vR5TTPmYcUUZoWfJgJJMpUyw7PzffpmM2naL-5K9JPJB8rbcV11I76Kp7Tuagen2EdCkCpt6B3WHHqH7auIH8k1Ey9CawwMcMrVDK2urveuPJ4htU6NnSOeuZ4IP1nShqa-SC2-qFkanOUxeZ9OX4iFdrO7nxWSRWpqRLuVGAnfYCitAskzy3Ge8b8oKKQk4h0uHqXOmVLmnwrMSM6d8KQSnzDrGhsn86Osas9WfMexM_NaNCfpXaOJGm9gFW4HGGXDKvSGEW66IUxisF0RwTmXOMtV7saOXjU3bRvB_fgTrQ9z6GLc-xK1PcffUzZEKAPCPyLngkrMfrkt7xQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lyu, Chunyan</creator><creator>Huang, Hai</creator><creator>Zhang, Lixi</creator><creator>Zhu, Wenting</creator><creator>Wang, Zhengyang</creator><creator>Wang, Kejun</creator><creator>Jiao, Caidong</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2416-630X</orcidid><orcidid>https://orcid.org/0009-0004-8451-0784</orcidid><orcidid>https://orcid.org/0009-0008-7130-7786</orcidid></search><sort><creationdate>2024</creationdate><title>Multi-Branch Feature Alignment Network for Misaligned and Occluded Person Re-Identification</title><author>Lyu, Chunyan ; Huang, Hai ; Zhang, Lixi ; Zhu, Wenting ; Wang, Zhengyang ; Wang, Kejun ; Jiao, Caidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-4a8e4d0c5c5e836847f6447f9c5881edd0bd02ddab97f25f3b03d9fb55423cd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>feature alignment</topic><topic>Feature extraction</topic><topic>feature-weighted fusion</topic><topic>Hip</topic><topic>Identification of persons</topic><topic>Legged locomotion</topic><topic>Pedestrians</topic><topic>Person re-identification</topic><topic>Pixel</topic><topic>pixel level</topic><topic>Pose estimation</topic><topic>Semantics</topic><topic>Surveillance</topic><topic>Torso</topic><topic>Wrist</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyu, Chunyan</creatorcontrib><creatorcontrib>Huang, Hai</creatorcontrib><creatorcontrib>Zhang, Lixi</creatorcontrib><creatorcontrib>Zhu, Wenting</creatorcontrib><creatorcontrib>Wang, Zhengyang</creatorcontrib><creatorcontrib>Wang, Kejun</creatorcontrib><creatorcontrib>Jiao, Caidong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyu, Chunyan</au><au>Huang, Hai</au><au>Zhang, Lixi</au><au>Zhu, Wenting</au><au>Wang, Zhengyang</au><au>Wang, Kejun</au><au>Jiao, Caidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Branch Feature Alignment Network for Misaligned and Occluded Person Re-Identification</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>175445</spage><epage>175457</epage><pages>175445-175457</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>As a pivotal computer vision technique, person re-identification (re-ID) assumes a paramount role in bolstering public security. During the process of computing feature similarities among person images, misaligned and occluded body parts may impede accurate identity retrieval. To mitigate these challenges, we introduce a Multi-Branch Feature Alignment Network (MBFA) comprising three distinct deep neural network branches. Primarily, the global feature branch is tailored to extract comprehensive features. Subsequently, the pose alignment branch is formulated to acquire segmented features via a specific feature-weighted fusion strategy. Finally, the semantic alignment branch is devised to derive high-order semantic features at a pixel level, enabling precise localization of visible parts in occluded pedestrians and focusing similarity computations on these regions. The integration of multi-scale feature information synergistically complements one another, resulting in feature alignment that augments the robustness and discrimination capabilities of the entire network. Consequently, MBFA adeptly mitigates the interferences caused by misalignment and occlusion. Across three prominent re-ID datasets and an occluded re-ID dataset, experimental results unequivocally affirm the superiority of our proposed methodology over existing state-of-the-art methods.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3492312</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2416-630X</orcidid><orcidid>https://orcid.org/0009-0004-8451-0784</orcidid><orcidid>https://orcid.org/0009-0008-7130-7786</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.175445-175457
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10745484
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects feature alignment
Feature extraction
feature-weighted fusion
Hip
Identification of persons
Legged locomotion
Pedestrians
Person re-identification
Pixel
pixel level
Pose estimation
Semantics
Surveillance
Torso
Wrist
title Multi-Branch Feature Alignment Network for Misaligned and Occluded Person Re-Identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A30%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Branch%20Feature%20Alignment%20Network%20for%20Misaligned%20and%20Occluded%20Person%20Re-Identification&rft.jtitle=IEEE%20access&rft.au=Lyu,%20Chunyan&rft.date=2024&rft.volume=12&rft.spage=175445&rft.epage=175457&rft.pages=175445-175457&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3492312&rft_dat=%3Cdoaj_ieee_%3Eoai_doaj_org_article_06e424fa114c491d90ecf51544287369%3C/doaj_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10745484&rft_doaj_id=oai_doaj_org_article_06e424fa114c491d90ecf51544287369&rfr_iscdi=true