Energy-Efficient Covert Offloading in Blockchain-Enabled IoT: Joint Artificial Noise and Computation Resource Allocation
This paper proposes an energy-efficient covert offloading scheme for blockchain-enabled IoT, allowing sensors to upload tasks undetected by adversaries while ensuring satisfaction in paid computation offloading. Covert communication conceals the existence of transmitted signals or links. However, ex...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2024-11, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE internet of things journal |
container_volume | |
creator | Jiang, Yu'e Wang, Yutong Wu, Haiqin Liu, Yiliang Hu, Langtao |
description | This paper proposes an energy-efficient covert offloading scheme for blockchain-enabled IoT, allowing sensors to upload tasks undetected by adversaries while ensuring satisfaction in paid computation offloading. Covert communication conceals the existence of transmitted signals or links. However, existing schemes primarily rely on artificial noise (AN) or wireless channel uncertainty, resulting in low covert rates for IoT offloading scenarios. Additionally, blockchain-enabled IoT, being value-oriented, necessitates consideration of sensors' satisfaction during covert offloading. To tackle these challenges, the proposed scheme combines the adversary's channel estimation errors with AN to enhance the covert rate, while also matching sensors' satisfaction with the computation resources of mobile edge servers. Notably, a closed-form expression of the average minimum error detection probability is derived to maximize the effective covert rate. Furthermore, an integrated algorithm combining the Kuhn-Munkres (KM) algorithm with two bubble sort algorithms is designed to minimize energy consumption. Both analytical and simulation results demonstrate that the proposed scheme significantly reduces energy consumption compared to existing solutions. |
doi_str_mv | 10.1109/JIOT.2024.3491431 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10742605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10742605</ieee_id><sourcerecordid>10_1109_JIOT_2024_3491431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c635-2c2b6a824d3a26eaa07ad19ac0bc43d0cc69faf8c0fff3198fda9567a518c6063</originalsourceid><addsrcrecordid>eNpNkF1PwjAUQBujiQT5ASY-9A8M-7Vu8w3JVAiRxOx9uXQtVkdL2mHk37sJDzzdm5t7zsNB6J6SKaWkeFwu1tWUESamXBRUcHqFRoyzLBFSsuuL_RZNYvwihPRYSgs5Qr-l02F7TEpjrLLadXjuf3To8NqY1kNj3RZbh59br77VJ1iXlA42rW7wwldPeOltj8xCZwccWvzubdQYXNN7dvtDB531Dn_o6A9BaTxre9H_7Q7dGGijnpznGFUvZTV_S1br18V8tkqU5GnCFNtIyJloODCpAUgGDS1AkY0SvCFKycKAyRUxxnBa5KaBIpUZpDRXkkg-RvSkVcHHGLSp98HuIBxrSuohXj3Eq4d49TlezzycGKu1vvjPBJMk5X9LW203</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Energy-Efficient Covert Offloading in Blockchain-Enabled IoT: Joint Artificial Noise and Computation Resource Allocation</title><source>IEEE/IET Electronic Library</source><creator>Jiang, Yu'e ; Wang, Yutong ; Wu, Haiqin ; Liu, Yiliang ; Hu, Langtao</creator><creatorcontrib>Jiang, Yu'e ; Wang, Yutong ; Wu, Haiqin ; Liu, Yiliang ; Hu, Langtao</creatorcontrib><description>This paper proposes an energy-efficient covert offloading scheme for blockchain-enabled IoT, allowing sensors to upload tasks undetected by adversaries while ensuring satisfaction in paid computation offloading. Covert communication conceals the existence of transmitted signals or links. However, existing schemes primarily rely on artificial noise (AN) or wireless channel uncertainty, resulting in low covert rates for IoT offloading scenarios. Additionally, blockchain-enabled IoT, being value-oriented, necessitates consideration of sensors' satisfaction during covert offloading. To tackle these challenges, the proposed scheme combines the adversary's channel estimation errors with AN to enhance the covert rate, while also matching sensors' satisfaction with the computation resources of mobile edge servers. Notably, a closed-form expression of the average minimum error detection probability is derived to maximize the effective covert rate. Furthermore, an integrated algorithm combining the Kuhn-Munkres (KM) algorithm with two bubble sort algorithms is designed to minimize energy consumption. Both analytical and simulation results demonstrate that the proposed scheme significantly reduces energy consumption compared to existing solutions.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3491431</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial Noise ; Blockchain ; Blockchains ; Channel estimation ; Computation offloading ; Covert Communications ; Energy consumption ; Estimation error ; Internet of Things ; Noise ; Resource management ; Security ; Sensors ; Servers</subject><ispartof>IEEE internet of things journal, 2024-11, p.1-1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2942-6975 ; 0000-0002-6301-6347 ; 0000-0002-1612-7212 ; 0000-0003-1704-2736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10742605$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10742605$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jiang, Yu'e</creatorcontrib><creatorcontrib>Wang, Yutong</creatorcontrib><creatorcontrib>Wu, Haiqin</creatorcontrib><creatorcontrib>Liu, Yiliang</creatorcontrib><creatorcontrib>Hu, Langtao</creatorcontrib><title>Energy-Efficient Covert Offloading in Blockchain-Enabled IoT: Joint Artificial Noise and Computation Resource Allocation</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>This paper proposes an energy-efficient covert offloading scheme for blockchain-enabled IoT, allowing sensors to upload tasks undetected by adversaries while ensuring satisfaction in paid computation offloading. Covert communication conceals the existence of transmitted signals or links. However, existing schemes primarily rely on artificial noise (AN) or wireless channel uncertainty, resulting in low covert rates for IoT offloading scenarios. Additionally, blockchain-enabled IoT, being value-oriented, necessitates consideration of sensors' satisfaction during covert offloading. To tackle these challenges, the proposed scheme combines the adversary's channel estimation errors with AN to enhance the covert rate, while also matching sensors' satisfaction with the computation resources of mobile edge servers. Notably, a closed-form expression of the average minimum error detection probability is derived to maximize the effective covert rate. Furthermore, an integrated algorithm combining the Kuhn-Munkres (KM) algorithm with two bubble sort algorithms is designed to minimize energy consumption. Both analytical and simulation results demonstrate that the proposed scheme significantly reduces energy consumption compared to existing solutions.</description><subject>Artificial Noise</subject><subject>Blockchain</subject><subject>Blockchains</subject><subject>Channel estimation</subject><subject>Computation offloading</subject><subject>Covert Communications</subject><subject>Energy consumption</subject><subject>Estimation error</subject><subject>Internet of Things</subject><subject>Noise</subject><subject>Resource management</subject><subject>Security</subject><subject>Sensors</subject><subject>Servers</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1PwjAUQBujiQT5ASY-9A8M-7Vu8w3JVAiRxOx9uXQtVkdL2mHk37sJDzzdm5t7zsNB6J6SKaWkeFwu1tWUESamXBRUcHqFRoyzLBFSsuuL_RZNYvwihPRYSgs5Qr-l02F7TEpjrLLadXjuf3To8NqY1kNj3RZbh59br77VJ1iXlA42rW7wwldPeOltj8xCZwccWvzubdQYXNN7dvtDB531Dn_o6A9BaTxre9H_7Q7dGGijnpznGFUvZTV_S1br18V8tkqU5GnCFNtIyJloODCpAUgGDS1AkY0SvCFKycKAyRUxxnBa5KaBIpUZpDRXkkg-RvSkVcHHGLSp98HuIBxrSuohXj3Eq4d49TlezzycGKu1vvjPBJMk5X9LW203</recordid><startdate>20241104</startdate><enddate>20241104</enddate><creator>Jiang, Yu'e</creator><creator>Wang, Yutong</creator><creator>Wu, Haiqin</creator><creator>Liu, Yiliang</creator><creator>Hu, Langtao</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2942-6975</orcidid><orcidid>https://orcid.org/0000-0002-6301-6347</orcidid><orcidid>https://orcid.org/0000-0002-1612-7212</orcidid><orcidid>https://orcid.org/0000-0003-1704-2736</orcidid></search><sort><creationdate>20241104</creationdate><title>Energy-Efficient Covert Offloading in Blockchain-Enabled IoT: Joint Artificial Noise and Computation Resource Allocation</title><author>Jiang, Yu'e ; Wang, Yutong ; Wu, Haiqin ; Liu, Yiliang ; Hu, Langtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c635-2c2b6a824d3a26eaa07ad19ac0bc43d0cc69faf8c0fff3198fda9567a518c6063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Noise</topic><topic>Blockchain</topic><topic>Blockchains</topic><topic>Channel estimation</topic><topic>Computation offloading</topic><topic>Covert Communications</topic><topic>Energy consumption</topic><topic>Estimation error</topic><topic>Internet of Things</topic><topic>Noise</topic><topic>Resource management</topic><topic>Security</topic><topic>Sensors</topic><topic>Servers</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yu'e</creatorcontrib><creatorcontrib>Wang, Yutong</creatorcontrib><creatorcontrib>Wu, Haiqin</creatorcontrib><creatorcontrib>Liu, Yiliang</creatorcontrib><creatorcontrib>Hu, Langtao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiang, Yu'e</au><au>Wang, Yutong</au><au>Wu, Haiqin</au><au>Liu, Yiliang</au><au>Hu, Langtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Efficient Covert Offloading in Blockchain-Enabled IoT: Joint Artificial Noise and Computation Resource Allocation</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-11-04</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>This paper proposes an energy-efficient covert offloading scheme for blockchain-enabled IoT, allowing sensors to upload tasks undetected by adversaries while ensuring satisfaction in paid computation offloading. Covert communication conceals the existence of transmitted signals or links. However, existing schemes primarily rely on artificial noise (AN) or wireless channel uncertainty, resulting in low covert rates for IoT offloading scenarios. Additionally, blockchain-enabled IoT, being value-oriented, necessitates consideration of sensors' satisfaction during covert offloading. To tackle these challenges, the proposed scheme combines the adversary's channel estimation errors with AN to enhance the covert rate, while also matching sensors' satisfaction with the computation resources of mobile edge servers. Notably, a closed-form expression of the average minimum error detection probability is derived to maximize the effective covert rate. Furthermore, an integrated algorithm combining the Kuhn-Munkres (KM) algorithm with two bubble sort algorithms is designed to minimize energy consumption. Both analytical and simulation results demonstrate that the proposed scheme significantly reduces energy consumption compared to existing solutions.</abstract><pub>IEEE</pub><doi>10.1109/JIOT.2024.3491431</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2942-6975</orcidid><orcidid>https://orcid.org/0000-0002-6301-6347</orcidid><orcidid>https://orcid.org/0000-0002-1612-7212</orcidid><orcidid>https://orcid.org/0000-0003-1704-2736</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2024-11, p.1-1 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_ieee_primary_10742605 |
source | IEEE/IET Electronic Library |
subjects | Artificial Noise Blockchain Blockchains Channel estimation Computation offloading Covert Communications Energy consumption Estimation error Internet of Things Noise Resource management Security Sensors Servers |
title | Energy-Efficient Covert Offloading in Blockchain-Enabled IoT: Joint Artificial Noise and Computation Resource Allocation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A41%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Efficient%20Covert%20Offloading%20in%20Blockchain-Enabled%20IoT:%20Joint%20Artificial%20Noise%20and%20Computation%20Resource%20Allocation&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Jiang,%20Yu'e&rft.date=2024-11-04&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3491431&rft_dat=%3Ccrossref_RIE%3E10_1109_JIOT_2024_3491431%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10742605&rfr_iscdi=true |