S3E: A Multi-Robot Multimodal Dataset for Collaborative SLAM

The burgeoning demand for collaborative robotic systems to execute complex tasks collectively has intensified the research community's focus on advancing simultaneous localization and mapping (SLAM) in a cooperative context. Despite this interest, the scalability and diversity of existing datas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2024-12, Vol.9 (12), p.11401-11408
Hauptverfasser: Feng, Dapeng, Qi, Yuhua, Zhong, Shipeng, Chen, Zhiqiang, Chen, Qiming, Chen, Hongbo, Wu, Jin, Ma, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11408
container_issue 12
container_start_page 11401
container_title IEEE robotics and automation letters
container_volume 9
creator Feng, Dapeng
Qi, Yuhua
Zhong, Shipeng
Chen, Zhiqiang
Chen, Qiming
Chen, Hongbo
Wu, Jin
Ma, Jun
description The burgeoning demand for collaborative robotic systems to execute complex tasks collectively has intensified the research community's focus on advancing simultaneous localization and mapping (SLAM) in a cooperative context. Despite this interest, the scalability and diversity of existing datasets for collaborative trajectories remain limited, especially in scenarios with constrained perspectives where the generalization capabilities of Collaborative SLAM (C-SLAM) are critical for the feasibility of multi-agent missions. Addressing this gap, we introduce S3E, an expansive multimodal dataset. Captured by a fleet of unmanned ground vehicles traversing four distinct collaborative trajectory paradigms, S3E encompasses 13 outdoor and 5 indoor sequences. These sequences feature meticulously synchronized and spatially calibrated data streams, including 360-degree LiDAR point cloud, high-resolution stereo imagery, high-frequency inertial measurement units (IMU), and Ultra-wideband (UWB) relative observations. Our dataset not only surpasses previous efforts in scale, scene diversity, and data intricacy but also provides a thorough analysis and benchmarks for both collaborative and individual SLAM methodologies.
doi_str_mv 10.1109/LRA.2024.3490402
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10740801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10740801</ieee_id><sourcerecordid>10_1109_LRA_2024_3490402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-683adfb3499e5a6dbb623123c07feae2b99891750a6e8b42f287d038e06732893</originalsourceid><addsrcrecordid>eNpNkEtLxDAcxIMouKx79-ChX6DrP4_mIV5KXR_QRdjVc0jaBCpdIkkU_PZ26R72NHOYGYYfQrcY1hiDum939ZoAYWvKFDAgF2hBqBAlFZxfnvlrtErpCwBwRQRV1QI97unmoaiL7c-Yh3IXbMizP4TejMWTySa5XPgQiyaMo7Ehmjz8umLf1tsbdOXNmNzqpEv0-bz5aF7L9v3lranbssNM5JJLanpvp2_KVYb31nJCMaEdCO-MI1YpqbCowHAnLSOeSNEDlQ64oEQqukQw73YxpBSd199xOJj4pzHoIwA9AdBHAPoEYKrczZXBOXcWFwwkYPoPnDtUbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>S3E: A Multi-Robot Multimodal Dataset for Collaborative SLAM</title><source>IEEE Electronic Library (IEL)</source><creator>Feng, Dapeng ; Qi, Yuhua ; Zhong, Shipeng ; Chen, Zhiqiang ; Chen, Qiming ; Chen, Hongbo ; Wu, Jin ; Ma, Jun</creator><creatorcontrib>Feng, Dapeng ; Qi, Yuhua ; Zhong, Shipeng ; Chen, Zhiqiang ; Chen, Qiming ; Chen, Hongbo ; Wu, Jin ; Ma, Jun</creatorcontrib><description>The burgeoning demand for collaborative robotic systems to execute complex tasks collectively has intensified the research community's focus on advancing simultaneous localization and mapping (SLAM) in a cooperative context. Despite this interest, the scalability and diversity of existing datasets for collaborative trajectories remain limited, especially in scenarios with constrained perspectives where the generalization capabilities of Collaborative SLAM (C-SLAM) are critical for the feasibility of multi-agent missions. Addressing this gap, we introduce S3E, an expansive multimodal dataset. Captured by a fleet of unmanned ground vehicles traversing four distinct collaborative trajectory paradigms, S3E encompasses 13 outdoor and 5 indoor sequences. These sequences feature meticulously synchronized and spatially calibrated data streams, including 360-degree LiDAR point cloud, high-resolution stereo imagery, high-frequency inertial measurement units (IMU), and Ultra-wideband (UWB) relative observations. Our dataset not only surpasses previous efforts in scale, scene diversity, and data intricacy but also provides a thorough analysis and benchmarks for both collaborative and individual SLAM methodologies.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2024.3490402</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Collaboration ; data sets for SLAM ; Global navigation satellite system ; Motion capture ; Multi-robot SLAM ; Multi-robot systems ; Robot localization ; Robot sensing systems ; Simultaneous localization and mapping ; SLAM ; Synchronization ; Trajectory</subject><ispartof>IEEE robotics and automation letters, 2024-12, Vol.9 (12), p.11401-11408</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c147t-683adfb3499e5a6dbb623123c07feae2b99891750a6e8b42f287d038e06732893</cites><orcidid>0000-0001-8708-972X ; 0000-0003-4488-7881 ; 0000-0001-5930-4170 ; 0000-0002-9405-8232 ; 0000-0003-1062-1452 ; 0000-0003-1071-4966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10740801$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10740801$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feng, Dapeng</creatorcontrib><creatorcontrib>Qi, Yuhua</creatorcontrib><creatorcontrib>Zhong, Shipeng</creatorcontrib><creatorcontrib>Chen, Zhiqiang</creatorcontrib><creatorcontrib>Chen, Qiming</creatorcontrib><creatorcontrib>Chen, Hongbo</creatorcontrib><creatorcontrib>Wu, Jin</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><title>S3E: A Multi-Robot Multimodal Dataset for Collaborative SLAM</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>The burgeoning demand for collaborative robotic systems to execute complex tasks collectively has intensified the research community's focus on advancing simultaneous localization and mapping (SLAM) in a cooperative context. Despite this interest, the scalability and diversity of existing datasets for collaborative trajectories remain limited, especially in scenarios with constrained perspectives where the generalization capabilities of Collaborative SLAM (C-SLAM) are critical for the feasibility of multi-agent missions. Addressing this gap, we introduce S3E, an expansive multimodal dataset. Captured by a fleet of unmanned ground vehicles traversing four distinct collaborative trajectory paradigms, S3E encompasses 13 outdoor and 5 indoor sequences. These sequences feature meticulously synchronized and spatially calibrated data streams, including 360-degree LiDAR point cloud, high-resolution stereo imagery, high-frequency inertial measurement units (IMU), and Ultra-wideband (UWB) relative observations. Our dataset not only surpasses previous efforts in scale, scene diversity, and data intricacy but also provides a thorough analysis and benchmarks for both collaborative and individual SLAM methodologies.</description><subject>Accuracy</subject><subject>Collaboration</subject><subject>data sets for SLAM</subject><subject>Global navigation satellite system</subject><subject>Motion capture</subject><subject>Multi-robot SLAM</subject><subject>Multi-robot systems</subject><subject>Robot localization</subject><subject>Robot sensing systems</subject><subject>Simultaneous localization and mapping</subject><subject>SLAM</subject><subject>Synchronization</subject><subject>Trajectory</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLxDAcxIMouKx79-ChX6DrP4_mIV5KXR_QRdjVc0jaBCpdIkkU_PZ26R72NHOYGYYfQrcY1hiDum939ZoAYWvKFDAgF2hBqBAlFZxfnvlrtErpCwBwRQRV1QI97unmoaiL7c-Yh3IXbMizP4TejMWTySa5XPgQiyaMo7Ehmjz8umLf1tsbdOXNmNzqpEv0-bz5aF7L9v3lranbssNM5JJLanpvp2_KVYb31nJCMaEdCO-MI1YpqbCowHAnLSOeSNEDlQ64oEQqukQw73YxpBSd199xOJj4pzHoIwA9AdBHAPoEYKrczZXBOXcWFwwkYPoPnDtUbg</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Feng, Dapeng</creator><creator>Qi, Yuhua</creator><creator>Zhong, Shipeng</creator><creator>Chen, Zhiqiang</creator><creator>Chen, Qiming</creator><creator>Chen, Hongbo</creator><creator>Wu, Jin</creator><creator>Ma, Jun</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8708-972X</orcidid><orcidid>https://orcid.org/0000-0003-4488-7881</orcidid><orcidid>https://orcid.org/0000-0001-5930-4170</orcidid><orcidid>https://orcid.org/0000-0002-9405-8232</orcidid><orcidid>https://orcid.org/0000-0003-1062-1452</orcidid><orcidid>https://orcid.org/0000-0003-1071-4966</orcidid></search><sort><creationdate>202412</creationdate><title>S3E: A Multi-Robot Multimodal Dataset for Collaborative SLAM</title><author>Feng, Dapeng ; Qi, Yuhua ; Zhong, Shipeng ; Chen, Zhiqiang ; Chen, Qiming ; Chen, Hongbo ; Wu, Jin ; Ma, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-683adfb3499e5a6dbb623123c07feae2b99891750a6e8b42f287d038e06732893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Collaboration</topic><topic>data sets for SLAM</topic><topic>Global navigation satellite system</topic><topic>Motion capture</topic><topic>Multi-robot SLAM</topic><topic>Multi-robot systems</topic><topic>Robot localization</topic><topic>Robot sensing systems</topic><topic>Simultaneous localization and mapping</topic><topic>SLAM</topic><topic>Synchronization</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Dapeng</creatorcontrib><creatorcontrib>Qi, Yuhua</creatorcontrib><creatorcontrib>Zhong, Shipeng</creatorcontrib><creatorcontrib>Chen, Zhiqiang</creatorcontrib><creatorcontrib>Chen, Qiming</creatorcontrib><creatorcontrib>Chen, Hongbo</creatorcontrib><creatorcontrib>Wu, Jin</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Dapeng</au><au>Qi, Yuhua</au><au>Zhong, Shipeng</au><au>Chen, Zhiqiang</au><au>Chen, Qiming</au><au>Chen, Hongbo</au><au>Wu, Jin</au><au>Ma, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>S3E: A Multi-Robot Multimodal Dataset for Collaborative SLAM</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2024-12</date><risdate>2024</risdate><volume>9</volume><issue>12</issue><spage>11401</spage><epage>11408</epage><pages>11401-11408</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>The burgeoning demand for collaborative robotic systems to execute complex tasks collectively has intensified the research community's focus on advancing simultaneous localization and mapping (SLAM) in a cooperative context. Despite this interest, the scalability and diversity of existing datasets for collaborative trajectories remain limited, especially in scenarios with constrained perspectives where the generalization capabilities of Collaborative SLAM (C-SLAM) are critical for the feasibility of multi-agent missions. Addressing this gap, we introduce S3E, an expansive multimodal dataset. Captured by a fleet of unmanned ground vehicles traversing four distinct collaborative trajectory paradigms, S3E encompasses 13 outdoor and 5 indoor sequences. These sequences feature meticulously synchronized and spatially calibrated data streams, including 360-degree LiDAR point cloud, high-resolution stereo imagery, high-frequency inertial measurement units (IMU), and Ultra-wideband (UWB) relative observations. Our dataset not only surpasses previous efforts in scale, scene diversity, and data intricacy but also provides a thorough analysis and benchmarks for both collaborative and individual SLAM methodologies.</abstract><pub>IEEE</pub><doi>10.1109/LRA.2024.3490402</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8708-972X</orcidid><orcidid>https://orcid.org/0000-0003-4488-7881</orcidid><orcidid>https://orcid.org/0000-0001-5930-4170</orcidid><orcidid>https://orcid.org/0000-0002-9405-8232</orcidid><orcidid>https://orcid.org/0000-0003-1062-1452</orcidid><orcidid>https://orcid.org/0000-0003-1071-4966</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2024-12, Vol.9 (12), p.11401-11408
issn 2377-3766
2377-3766
language eng
recordid cdi_ieee_primary_10740801
source IEEE Electronic Library (IEL)
subjects Accuracy
Collaboration
data sets for SLAM
Global navigation satellite system
Motion capture
Multi-robot SLAM
Multi-robot systems
Robot localization
Robot sensing systems
Simultaneous localization and mapping
SLAM
Synchronization
Trajectory
title S3E: A Multi-Robot Multimodal Dataset for Collaborative SLAM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T05%3A26%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=S3E:%20A%20Multi-Robot%20Multimodal%20Dataset%20for%20Collaborative%20SLAM&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Feng,%20Dapeng&rft.date=2024-12&rft.volume=9&rft.issue=12&rft.spage=11401&rft.epage=11408&rft.pages=11401-11408&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2024.3490402&rft_dat=%3Ccrossref_RIE%3E10_1109_LRA_2024_3490402%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10740801&rfr_iscdi=true