S3E: A Multi-Robot Multimodal Dataset for Collaborative SLAM
The burgeoning demand for collaborative robotic systems to execute complex tasks collectively has intensified the research community's focus on advancing simultaneous localization and mapping (SLAM) in a cooperative context. Despite this interest, the scalability and diversity of existing datas...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2024-12, Vol.9 (12), p.11401-11408 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11408 |
---|---|
container_issue | 12 |
container_start_page | 11401 |
container_title | IEEE robotics and automation letters |
container_volume | 9 |
creator | Feng, Dapeng Qi, Yuhua Zhong, Shipeng Chen, Zhiqiang Chen, Qiming Chen, Hongbo Wu, Jin Ma, Jun |
description | The burgeoning demand for collaborative robotic systems to execute complex tasks collectively has intensified the research community's focus on advancing simultaneous localization and mapping (SLAM) in a cooperative context. Despite this interest, the scalability and diversity of existing datasets for collaborative trajectories remain limited, especially in scenarios with constrained perspectives where the generalization capabilities of Collaborative SLAM (C-SLAM) are critical for the feasibility of multi-agent missions. Addressing this gap, we introduce S3E, an expansive multimodal dataset. Captured by a fleet of unmanned ground vehicles traversing four distinct collaborative trajectory paradigms, S3E encompasses 13 outdoor and 5 indoor sequences. These sequences feature meticulously synchronized and spatially calibrated data streams, including 360-degree LiDAR point cloud, high-resolution stereo imagery, high-frequency inertial measurement units (IMU), and Ultra-wideband (UWB) relative observations. Our dataset not only surpasses previous efforts in scale, scene diversity, and data intricacy but also provides a thorough analysis and benchmarks for both collaborative and individual SLAM methodologies. |
doi_str_mv | 10.1109/LRA.2024.3490402 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10740801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10740801</ieee_id><sourcerecordid>10_1109_LRA_2024_3490402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-683adfb3499e5a6dbb623123c07feae2b99891750a6e8b42f287d038e06732893</originalsourceid><addsrcrecordid>eNpNkEtLxDAcxIMouKx79-ChX6DrP4_mIV5KXR_QRdjVc0jaBCpdIkkU_PZ26R72NHOYGYYfQrcY1hiDum939ZoAYWvKFDAgF2hBqBAlFZxfnvlrtErpCwBwRQRV1QI97unmoaiL7c-Yh3IXbMizP4TejMWTySa5XPgQiyaMo7Ehmjz8umLf1tsbdOXNmNzqpEv0-bz5aF7L9v3lranbssNM5JJLanpvp2_KVYb31nJCMaEdCO-MI1YpqbCowHAnLSOeSNEDlQ64oEQqukQw73YxpBSd199xOJj4pzHoIwA9AdBHAPoEYKrczZXBOXcWFwwkYPoPnDtUbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>S3E: A Multi-Robot Multimodal Dataset for Collaborative SLAM</title><source>IEEE Electronic Library (IEL)</source><creator>Feng, Dapeng ; Qi, Yuhua ; Zhong, Shipeng ; Chen, Zhiqiang ; Chen, Qiming ; Chen, Hongbo ; Wu, Jin ; Ma, Jun</creator><creatorcontrib>Feng, Dapeng ; Qi, Yuhua ; Zhong, Shipeng ; Chen, Zhiqiang ; Chen, Qiming ; Chen, Hongbo ; Wu, Jin ; Ma, Jun</creatorcontrib><description>The burgeoning demand for collaborative robotic systems to execute complex tasks collectively has intensified the research community's focus on advancing simultaneous localization and mapping (SLAM) in a cooperative context. Despite this interest, the scalability and diversity of existing datasets for collaborative trajectories remain limited, especially in scenarios with constrained perspectives where the generalization capabilities of Collaborative SLAM (C-SLAM) are critical for the feasibility of multi-agent missions. Addressing this gap, we introduce S3E, an expansive multimodal dataset. Captured by a fleet of unmanned ground vehicles traversing four distinct collaborative trajectory paradigms, S3E encompasses 13 outdoor and 5 indoor sequences. These sequences feature meticulously synchronized and spatially calibrated data streams, including 360-degree LiDAR point cloud, high-resolution stereo imagery, high-frequency inertial measurement units (IMU), and Ultra-wideband (UWB) relative observations. Our dataset not only surpasses previous efforts in scale, scene diversity, and data intricacy but also provides a thorough analysis and benchmarks for both collaborative and individual SLAM methodologies.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2024.3490402</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Collaboration ; data sets for SLAM ; Global navigation satellite system ; Motion capture ; Multi-robot SLAM ; Multi-robot systems ; Robot localization ; Robot sensing systems ; Simultaneous localization and mapping ; SLAM ; Synchronization ; Trajectory</subject><ispartof>IEEE robotics and automation letters, 2024-12, Vol.9 (12), p.11401-11408</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c147t-683adfb3499e5a6dbb623123c07feae2b99891750a6e8b42f287d038e06732893</cites><orcidid>0000-0001-8708-972X ; 0000-0003-4488-7881 ; 0000-0001-5930-4170 ; 0000-0002-9405-8232 ; 0000-0003-1062-1452 ; 0000-0003-1071-4966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10740801$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10740801$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feng, Dapeng</creatorcontrib><creatorcontrib>Qi, Yuhua</creatorcontrib><creatorcontrib>Zhong, Shipeng</creatorcontrib><creatorcontrib>Chen, Zhiqiang</creatorcontrib><creatorcontrib>Chen, Qiming</creatorcontrib><creatorcontrib>Chen, Hongbo</creatorcontrib><creatorcontrib>Wu, Jin</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><title>S3E: A Multi-Robot Multimodal Dataset for Collaborative SLAM</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>The burgeoning demand for collaborative robotic systems to execute complex tasks collectively has intensified the research community's focus on advancing simultaneous localization and mapping (SLAM) in a cooperative context. Despite this interest, the scalability and diversity of existing datasets for collaborative trajectories remain limited, especially in scenarios with constrained perspectives where the generalization capabilities of Collaborative SLAM (C-SLAM) are critical for the feasibility of multi-agent missions. Addressing this gap, we introduce S3E, an expansive multimodal dataset. Captured by a fleet of unmanned ground vehicles traversing four distinct collaborative trajectory paradigms, S3E encompasses 13 outdoor and 5 indoor sequences. These sequences feature meticulously synchronized and spatially calibrated data streams, including 360-degree LiDAR point cloud, high-resolution stereo imagery, high-frequency inertial measurement units (IMU), and Ultra-wideband (UWB) relative observations. Our dataset not only surpasses previous efforts in scale, scene diversity, and data intricacy but also provides a thorough analysis and benchmarks for both collaborative and individual SLAM methodologies.</description><subject>Accuracy</subject><subject>Collaboration</subject><subject>data sets for SLAM</subject><subject>Global navigation satellite system</subject><subject>Motion capture</subject><subject>Multi-robot SLAM</subject><subject>Multi-robot systems</subject><subject>Robot localization</subject><subject>Robot sensing systems</subject><subject>Simultaneous localization and mapping</subject><subject>SLAM</subject><subject>Synchronization</subject><subject>Trajectory</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLxDAcxIMouKx79-ChX6DrP4_mIV5KXR_QRdjVc0jaBCpdIkkU_PZ26R72NHOYGYYfQrcY1hiDum939ZoAYWvKFDAgF2hBqBAlFZxfnvlrtErpCwBwRQRV1QI97unmoaiL7c-Yh3IXbMizP4TejMWTySa5XPgQiyaMo7Ehmjz8umLf1tsbdOXNmNzqpEv0-bz5aF7L9v3lranbssNM5JJLanpvp2_KVYb31nJCMaEdCO-MI1YpqbCowHAnLSOeSNEDlQ64oEQqukQw73YxpBSd199xOJj4pzHoIwA9AdBHAPoEYKrczZXBOXcWFwwkYPoPnDtUbg</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Feng, Dapeng</creator><creator>Qi, Yuhua</creator><creator>Zhong, Shipeng</creator><creator>Chen, Zhiqiang</creator><creator>Chen, Qiming</creator><creator>Chen, Hongbo</creator><creator>Wu, Jin</creator><creator>Ma, Jun</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8708-972X</orcidid><orcidid>https://orcid.org/0000-0003-4488-7881</orcidid><orcidid>https://orcid.org/0000-0001-5930-4170</orcidid><orcidid>https://orcid.org/0000-0002-9405-8232</orcidid><orcidid>https://orcid.org/0000-0003-1062-1452</orcidid><orcidid>https://orcid.org/0000-0003-1071-4966</orcidid></search><sort><creationdate>202412</creationdate><title>S3E: A Multi-Robot Multimodal Dataset for Collaborative SLAM</title><author>Feng, Dapeng ; Qi, Yuhua ; Zhong, Shipeng ; Chen, Zhiqiang ; Chen, Qiming ; Chen, Hongbo ; Wu, Jin ; Ma, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-683adfb3499e5a6dbb623123c07feae2b99891750a6e8b42f287d038e06732893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Collaboration</topic><topic>data sets for SLAM</topic><topic>Global navigation satellite system</topic><topic>Motion capture</topic><topic>Multi-robot SLAM</topic><topic>Multi-robot systems</topic><topic>Robot localization</topic><topic>Robot sensing systems</topic><topic>Simultaneous localization and mapping</topic><topic>SLAM</topic><topic>Synchronization</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Dapeng</creatorcontrib><creatorcontrib>Qi, Yuhua</creatorcontrib><creatorcontrib>Zhong, Shipeng</creatorcontrib><creatorcontrib>Chen, Zhiqiang</creatorcontrib><creatorcontrib>Chen, Qiming</creatorcontrib><creatorcontrib>Chen, Hongbo</creatorcontrib><creatorcontrib>Wu, Jin</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Dapeng</au><au>Qi, Yuhua</au><au>Zhong, Shipeng</au><au>Chen, Zhiqiang</au><au>Chen, Qiming</au><au>Chen, Hongbo</au><au>Wu, Jin</au><au>Ma, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>S3E: A Multi-Robot Multimodal Dataset for Collaborative SLAM</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2024-12</date><risdate>2024</risdate><volume>9</volume><issue>12</issue><spage>11401</spage><epage>11408</epage><pages>11401-11408</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>The burgeoning demand for collaborative robotic systems to execute complex tasks collectively has intensified the research community's focus on advancing simultaneous localization and mapping (SLAM) in a cooperative context. Despite this interest, the scalability and diversity of existing datasets for collaborative trajectories remain limited, especially in scenarios with constrained perspectives where the generalization capabilities of Collaborative SLAM (C-SLAM) are critical for the feasibility of multi-agent missions. Addressing this gap, we introduce S3E, an expansive multimodal dataset. Captured by a fleet of unmanned ground vehicles traversing four distinct collaborative trajectory paradigms, S3E encompasses 13 outdoor and 5 indoor sequences. These sequences feature meticulously synchronized and spatially calibrated data streams, including 360-degree LiDAR point cloud, high-resolution stereo imagery, high-frequency inertial measurement units (IMU), and Ultra-wideband (UWB) relative observations. Our dataset not only surpasses previous efforts in scale, scene diversity, and data intricacy but also provides a thorough analysis and benchmarks for both collaborative and individual SLAM methodologies.</abstract><pub>IEEE</pub><doi>10.1109/LRA.2024.3490402</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8708-972X</orcidid><orcidid>https://orcid.org/0000-0003-4488-7881</orcidid><orcidid>https://orcid.org/0000-0001-5930-4170</orcidid><orcidid>https://orcid.org/0000-0002-9405-8232</orcidid><orcidid>https://orcid.org/0000-0003-1062-1452</orcidid><orcidid>https://orcid.org/0000-0003-1071-4966</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2024-12, Vol.9 (12), p.11401-11408 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_ieee_primary_10740801 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Collaboration data sets for SLAM Global navigation satellite system Motion capture Multi-robot SLAM Multi-robot systems Robot localization Robot sensing systems Simultaneous localization and mapping SLAM Synchronization Trajectory |
title | S3E: A Multi-Robot Multimodal Dataset for Collaborative SLAM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T05%3A26%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=S3E:%20A%20Multi-Robot%20Multimodal%20Dataset%20for%20Collaborative%20SLAM&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Feng,%20Dapeng&rft.date=2024-12&rft.volume=9&rft.issue=12&rft.spage=11401&rft.epage=11408&rft.pages=11401-11408&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2024.3490402&rft_dat=%3Ccrossref_RIE%3E10_1109_LRA_2024_3490402%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10740801&rfr_iscdi=true |