DeFiGuard: A Price Manipulation Detection Service in DeFi Using Graph Neural Networks

The prosperity of Decentralized Finance (DeFi) unveils underlying risks, with reported losses surpassing 3.2 billion USD between 2018 and 2022 due to vulnerabilities in Decentralized Applications (DApps). One significant threat is the Price Manipulation Attack (PMA) that alters asset prices during t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on services computing 2024-11, Vol.17 (6), p.3345-3358
Hauptverfasser: Wang, Dabao, Wu, Bang, Yuan, Xingliang, Wu, Lei, Zhou, Yajin, Cui, Helei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3358
container_issue 6
container_start_page 3345
container_title IEEE transactions on services computing
container_volume 17
creator Wang, Dabao
Wu, Bang
Yuan, Xingliang
Wu, Lei
Zhou, Yajin
Cui, Helei
description The prosperity of Decentralized Finance (DeFi) unveils underlying risks, with reported losses surpassing 3.2 billion USD between 2018 and 2022 due to vulnerabilities in Decentralized Applications (DApps). One significant threat is the Price Manipulation Attack (PMA) that alters asset prices during transaction execution. As a result, PMA accounts for over 50 million USD in losses. To address the urgent need for efficient PMA detection, this article introduces a novel detection service, DeFiGuard , using Graph Neural Networks (GNNs). In this article, we propose cash flow graphs with four distinct features, which capture the trading behaviors from transactions. Moreover, DeFiGuard integrates transaction parsing, graph construction, model training, and PMA detection. Evaluations on the collected transactions demonstrate that DeFiGuard with GNN models outperforms the baseline MLP model and classical classification models in Accuracy, TPR, FPR, and AUC-ROC. The results of ablation studies suggest that the combination of the four proposed node features enhances DeFiGuard 's efficacy. Moreover, DeFiGuard classifies transactions within 0.892 to 5.317 seconds, which provides sufficient time for the victims (DApps and users) to take action to rescue their vulnerable funds. In conclusion, this research offers a significant step towards safeguarding the DeFi landscape from PMAs using GNNs.
doi_str_mv 10.1109/TSC.2024.3489439
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10740038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10740038</ieee_id><sourcerecordid>10_1109_TSC_2024_3489439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c189t-c865bc2ef36a87d9ad5077cacfdd12773996c1b0867fa8572d91b904b5eb0f083</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhC0EEqVw58DBfyBl_Uhsc6taWpDKQ2pzjhxnA4bSVnZSxL8noT1wmtHOzB4-Qq4ZjBgDc7taTkYcuBwJqY0U5oQMuFA8AQ7ylAyYESZhQslzchHjB0DGtTYDkk9x5uetDdUdHdPX4B3SJ7vxu3ZtG7_d0Ck26P7cEsO-j31_nHmaR795o_Ngd-_0Gdtg150039vwGS_JWW3XEa-OOiT57H41eUgWL_PHyXiROKZNkzidpaXjWIvMalUZW6WglLOurirGlRLGZI6VoDNVW50qXhlWGpBliiXUoMWQwOGvC9sYA9bFLvgvG34KBkWPpeiwFD2W4oilm9wcJh4R_9WVBBBa_AL3Xl5E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DeFiGuard: A Price Manipulation Detection Service in DeFi Using Graph Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Dabao ; Wu, Bang ; Yuan, Xingliang ; Wu, Lei ; Zhou, Yajin ; Cui, Helei</creator><creatorcontrib>Wang, Dabao ; Wu, Bang ; Yuan, Xingliang ; Wu, Lei ; Zhou, Yajin ; Cui, Helei</creatorcontrib><description>The prosperity of Decentralized Finance (DeFi) unveils underlying risks, with reported losses surpassing 3.2 billion USD between 2018 and 2022 due to vulnerabilities in Decentralized Applications (DApps). One significant threat is the Price Manipulation Attack (PMA) that alters asset prices during transaction execution. As a result, PMA accounts for over 50 million USD in losses. To address the urgent need for efficient PMA detection, this article introduces a novel detection service, DeFiGuard , using Graph Neural Networks (GNNs). In this article, we propose cash flow graphs with four distinct features, which capture the trading behaviors from transactions. Moreover, DeFiGuard integrates transaction parsing, graph construction, model training, and PMA detection. Evaluations on the collected transactions demonstrate that DeFiGuard with GNN models outperforms the baseline MLP model and classical classification models in Accuracy, TPR, FPR, and AUC-ROC. The results of ablation studies suggest that the combination of the four proposed node features enhances DeFiGuard 's efficacy. Moreover, DeFiGuard classifies transactions within 0.892 to 5.317 seconds, which provides sufficient time for the victims (DApps and users) to take action to rescue their vulnerable funds. In conclusion, this research offers a significant step towards safeguarding the DeFi landscape from PMAs using GNNs.</description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2024.3489439</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Classification algorithms ; Decentralized applications ; Decentralized finance ; Finance ; Flow graphs ; GNN ; Graph neural networks ; Measurement ; Peer-to-peer computing ; price manipulation ; Smart contracts ; Training</subject><ispartof>IEEE transactions on services computing, 2024-11, Vol.17 (6), p.3345-3358</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c189t-c865bc2ef36a87d9ad5077cacfdd12773996c1b0867fa8572d91b904b5eb0f083</cites><orcidid>0000-0002-3701-4946 ; 0000-0003-1946-5361 ; 0000-0003-1675-5283 ; 0000-0001-7610-4736 ; 0000-0002-4199-4318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10740038$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10740038$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Dabao</creatorcontrib><creatorcontrib>Wu, Bang</creatorcontrib><creatorcontrib>Yuan, Xingliang</creatorcontrib><creatorcontrib>Wu, Lei</creatorcontrib><creatorcontrib>Zhou, Yajin</creatorcontrib><creatorcontrib>Cui, Helei</creatorcontrib><title>DeFiGuard: A Price Manipulation Detection Service in DeFi Using Graph Neural Networks</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description>The prosperity of Decentralized Finance (DeFi) unveils underlying risks, with reported losses surpassing 3.2 billion USD between 2018 and 2022 due to vulnerabilities in Decentralized Applications (DApps). One significant threat is the Price Manipulation Attack (PMA) that alters asset prices during transaction execution. As a result, PMA accounts for over 50 million USD in losses. To address the urgent need for efficient PMA detection, this article introduces a novel detection service, DeFiGuard , using Graph Neural Networks (GNNs). In this article, we propose cash flow graphs with four distinct features, which capture the trading behaviors from transactions. Moreover, DeFiGuard integrates transaction parsing, graph construction, model training, and PMA detection. Evaluations on the collected transactions demonstrate that DeFiGuard with GNN models outperforms the baseline MLP model and classical classification models in Accuracy, TPR, FPR, and AUC-ROC. The results of ablation studies suggest that the combination of the four proposed node features enhances DeFiGuard 's efficacy. Moreover, DeFiGuard classifies transactions within 0.892 to 5.317 seconds, which provides sufficient time for the victims (DApps and users) to take action to rescue their vulnerable funds. In conclusion, this research offers a significant step towards safeguarding the DeFi landscape from PMAs using GNNs.</description><subject>Accuracy</subject><subject>Classification algorithms</subject><subject>Decentralized applications</subject><subject>Decentralized finance</subject><subject>Finance</subject><subject>Flow graphs</subject><subject>GNN</subject><subject>Graph neural networks</subject><subject>Measurement</subject><subject>Peer-to-peer computing</subject><subject>price manipulation</subject><subject>Smart contracts</subject><subject>Training</subject><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtPwzAQhC0EEqVw58DBfyBl_Uhsc6taWpDKQ2pzjhxnA4bSVnZSxL8noT1wmtHOzB4-Qq4ZjBgDc7taTkYcuBwJqY0U5oQMuFA8AQ7ylAyYESZhQslzchHjB0DGtTYDkk9x5uetDdUdHdPX4B3SJ7vxu3ZtG7_d0Ck26P7cEsO-j31_nHmaR795o_Ngd-_0Gdtg150039vwGS_JWW3XEa-OOiT57H41eUgWL_PHyXiROKZNkzidpaXjWIvMalUZW6WglLOurirGlRLGZI6VoDNVW50qXhlWGpBliiXUoMWQwOGvC9sYA9bFLvgvG34KBkWPpeiwFD2W4oilm9wcJh4R_9WVBBBa_AL3Xl5E</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Wang, Dabao</creator><creator>Wu, Bang</creator><creator>Yuan, Xingliang</creator><creator>Wu, Lei</creator><creator>Zhou, Yajin</creator><creator>Cui, Helei</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3701-4946</orcidid><orcidid>https://orcid.org/0000-0003-1946-5361</orcidid><orcidid>https://orcid.org/0000-0003-1675-5283</orcidid><orcidid>https://orcid.org/0000-0001-7610-4736</orcidid><orcidid>https://orcid.org/0000-0002-4199-4318</orcidid></search><sort><creationdate>202411</creationdate><title>DeFiGuard: A Price Manipulation Detection Service in DeFi Using Graph Neural Networks</title><author>Wang, Dabao ; Wu, Bang ; Yuan, Xingliang ; Wu, Lei ; Zhou, Yajin ; Cui, Helei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c189t-c865bc2ef36a87d9ad5077cacfdd12773996c1b0867fa8572d91b904b5eb0f083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Classification algorithms</topic><topic>Decentralized applications</topic><topic>Decentralized finance</topic><topic>Finance</topic><topic>Flow graphs</topic><topic>GNN</topic><topic>Graph neural networks</topic><topic>Measurement</topic><topic>Peer-to-peer computing</topic><topic>price manipulation</topic><topic>Smart contracts</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dabao</creatorcontrib><creatorcontrib>Wu, Bang</creatorcontrib><creatorcontrib>Yuan, Xingliang</creatorcontrib><creatorcontrib>Wu, Lei</creatorcontrib><creatorcontrib>Zhou, Yajin</creatorcontrib><creatorcontrib>Cui, Helei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Dabao</au><au>Wu, Bang</au><au>Yuan, Xingliang</au><au>Wu, Lei</au><au>Zhou, Yajin</au><au>Cui, Helei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DeFiGuard: A Price Manipulation Detection Service in DeFi Using Graph Neural Networks</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2024-11</date><risdate>2024</risdate><volume>17</volume><issue>6</issue><spage>3345</spage><epage>3358</epage><pages>3345-3358</pages><issn>1939-1374</issn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract>The prosperity of Decentralized Finance (DeFi) unveils underlying risks, with reported losses surpassing 3.2 billion USD between 2018 and 2022 due to vulnerabilities in Decentralized Applications (DApps). One significant threat is the Price Manipulation Attack (PMA) that alters asset prices during transaction execution. As a result, PMA accounts for over 50 million USD in losses. To address the urgent need for efficient PMA detection, this article introduces a novel detection service, DeFiGuard , using Graph Neural Networks (GNNs). In this article, we propose cash flow graphs with four distinct features, which capture the trading behaviors from transactions. Moreover, DeFiGuard integrates transaction parsing, graph construction, model training, and PMA detection. Evaluations on the collected transactions demonstrate that DeFiGuard with GNN models outperforms the baseline MLP model and classical classification models in Accuracy, TPR, FPR, and AUC-ROC. The results of ablation studies suggest that the combination of the four proposed node features enhances DeFiGuard 's efficacy. Moreover, DeFiGuard classifies transactions within 0.892 to 5.317 seconds, which provides sufficient time for the victims (DApps and users) to take action to rescue their vulnerable funds. In conclusion, this research offers a significant step towards safeguarding the DeFi landscape from PMAs using GNNs.</abstract><pub>IEEE</pub><doi>10.1109/TSC.2024.3489439</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3701-4946</orcidid><orcidid>https://orcid.org/0000-0003-1946-5361</orcidid><orcidid>https://orcid.org/0000-0003-1675-5283</orcidid><orcidid>https://orcid.org/0000-0001-7610-4736</orcidid><orcidid>https://orcid.org/0000-0002-4199-4318</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1939-1374
ispartof IEEE transactions on services computing, 2024-11, Vol.17 (6), p.3345-3358
issn 1939-1374
2372-0204
language eng
recordid cdi_ieee_primary_10740038
source IEEE Electronic Library (IEL)
subjects Accuracy
Classification algorithms
Decentralized applications
Decentralized finance
Finance
Flow graphs
GNN
Graph neural networks
Measurement
Peer-to-peer computing
price manipulation
Smart contracts
Training
title DeFiGuard: A Price Manipulation Detection Service in DeFi Using Graph Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DeFiGuard:%20A%20Price%20Manipulation%20Detection%20Service%20in%20DeFi%20Using%20Graph%20Neural%20Networks&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=Wang,%20Dabao&rft.date=2024-11&rft.volume=17&rft.issue=6&rft.spage=3345&rft.epage=3358&rft.pages=3345-3358&rft.issn=1939-1374&rft.eissn=2372-0204&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2024.3489439&rft_dat=%3Ccrossref_RIE%3E10_1109_TSC_2024_3489439%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10740038&rfr_iscdi=true