DeFiGuard: A Price Manipulation Detection Service in DeFi Using Graph Neural Networks
The prosperity of Decentralized Finance (DeFi) unveils underlying risks, with reported losses surpassing 3.2 billion USD between 2018 and 2022 due to vulnerabilities in Decentralized Applications (DApps). One significant threat is the Price Manipulation Attack (PMA) that alters asset prices during t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on services computing 2024-11, Vol.17 (6), p.3345-3358 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3358 |
---|---|
container_issue | 6 |
container_start_page | 3345 |
container_title | IEEE transactions on services computing |
container_volume | 17 |
creator | Wang, Dabao Wu, Bang Yuan, Xingliang Wu, Lei Zhou, Yajin Cui, Helei |
description | The prosperity of Decentralized Finance (DeFi) unveils underlying risks, with reported losses surpassing 3.2 billion USD between 2018 and 2022 due to vulnerabilities in Decentralized Applications (DApps). One significant threat is the Price Manipulation Attack (PMA) that alters asset prices during transaction execution. As a result, PMA accounts for over 50 million USD in losses. To address the urgent need for efficient PMA detection, this article introduces a novel detection service, DeFiGuard , using Graph Neural Networks (GNNs). In this article, we propose cash flow graphs with four distinct features, which capture the trading behaviors from transactions. Moreover, DeFiGuard integrates transaction parsing, graph construction, model training, and PMA detection. Evaluations on the collected transactions demonstrate that DeFiGuard with GNN models outperforms the baseline MLP model and classical classification models in Accuracy, TPR, FPR, and AUC-ROC. The results of ablation studies suggest that the combination of the four proposed node features enhances DeFiGuard 's efficacy. Moreover, DeFiGuard classifies transactions within 0.892 to 5.317 seconds, which provides sufficient time for the victims (DApps and users) to take action to rescue their vulnerable funds. In conclusion, this research offers a significant step towards safeguarding the DeFi landscape from PMAs using GNNs. |
doi_str_mv | 10.1109/TSC.2024.3489439 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10740038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10740038</ieee_id><sourcerecordid>10_1109_TSC_2024_3489439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c189t-c865bc2ef36a87d9ad5077cacfdd12773996c1b0867fa8572d91b904b5eb0f083</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhC0EEqVw58DBfyBl_Uhsc6taWpDKQ2pzjhxnA4bSVnZSxL8noT1wmtHOzB4-Qq4ZjBgDc7taTkYcuBwJqY0U5oQMuFA8AQ7ylAyYESZhQslzchHjB0DGtTYDkk9x5uetDdUdHdPX4B3SJ7vxu3ZtG7_d0Ck26P7cEsO-j31_nHmaR795o_Ngd-_0Gdtg150039vwGS_JWW3XEa-OOiT57H41eUgWL_PHyXiROKZNkzidpaXjWIvMalUZW6WglLOurirGlRLGZI6VoDNVW50qXhlWGpBliiXUoMWQwOGvC9sYA9bFLvgvG34KBkWPpeiwFD2W4oilm9wcJh4R_9WVBBBa_AL3Xl5E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DeFiGuard: A Price Manipulation Detection Service in DeFi Using Graph Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Dabao ; Wu, Bang ; Yuan, Xingliang ; Wu, Lei ; Zhou, Yajin ; Cui, Helei</creator><creatorcontrib>Wang, Dabao ; Wu, Bang ; Yuan, Xingliang ; Wu, Lei ; Zhou, Yajin ; Cui, Helei</creatorcontrib><description>The prosperity of Decentralized Finance (DeFi) unveils underlying risks, with reported losses surpassing 3.2 billion USD between 2018 and 2022 due to vulnerabilities in Decentralized Applications (DApps). One significant threat is the Price Manipulation Attack (PMA) that alters asset prices during transaction execution. As a result, PMA accounts for over 50 million USD in losses. To address the urgent need for efficient PMA detection, this article introduces a novel detection service, DeFiGuard , using Graph Neural Networks (GNNs). In this article, we propose cash flow graphs with four distinct features, which capture the trading behaviors from transactions. Moreover, DeFiGuard integrates transaction parsing, graph construction, model training, and PMA detection. Evaluations on the collected transactions demonstrate that DeFiGuard with GNN models outperforms the baseline MLP model and classical classification models in Accuracy, TPR, FPR, and AUC-ROC. The results of ablation studies suggest that the combination of the four proposed node features enhances DeFiGuard 's efficacy. Moreover, DeFiGuard classifies transactions within 0.892 to 5.317 seconds, which provides sufficient time for the victims (DApps and users) to take action to rescue their vulnerable funds. In conclusion, this research offers a significant step towards safeguarding the DeFi landscape from PMAs using GNNs.</description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2024.3489439</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Classification algorithms ; Decentralized applications ; Decentralized finance ; Finance ; Flow graphs ; GNN ; Graph neural networks ; Measurement ; Peer-to-peer computing ; price manipulation ; Smart contracts ; Training</subject><ispartof>IEEE transactions on services computing, 2024-11, Vol.17 (6), p.3345-3358</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c189t-c865bc2ef36a87d9ad5077cacfdd12773996c1b0867fa8572d91b904b5eb0f083</cites><orcidid>0000-0002-3701-4946 ; 0000-0003-1946-5361 ; 0000-0003-1675-5283 ; 0000-0001-7610-4736 ; 0000-0002-4199-4318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10740038$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10740038$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Dabao</creatorcontrib><creatorcontrib>Wu, Bang</creatorcontrib><creatorcontrib>Yuan, Xingliang</creatorcontrib><creatorcontrib>Wu, Lei</creatorcontrib><creatorcontrib>Zhou, Yajin</creatorcontrib><creatorcontrib>Cui, Helei</creatorcontrib><title>DeFiGuard: A Price Manipulation Detection Service in DeFi Using Graph Neural Networks</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description>The prosperity of Decentralized Finance (DeFi) unveils underlying risks, with reported losses surpassing 3.2 billion USD between 2018 and 2022 due to vulnerabilities in Decentralized Applications (DApps). One significant threat is the Price Manipulation Attack (PMA) that alters asset prices during transaction execution. As a result, PMA accounts for over 50 million USD in losses. To address the urgent need for efficient PMA detection, this article introduces a novel detection service, DeFiGuard , using Graph Neural Networks (GNNs). In this article, we propose cash flow graphs with four distinct features, which capture the trading behaviors from transactions. Moreover, DeFiGuard integrates transaction parsing, graph construction, model training, and PMA detection. Evaluations on the collected transactions demonstrate that DeFiGuard with GNN models outperforms the baseline MLP model and classical classification models in Accuracy, TPR, FPR, and AUC-ROC. The results of ablation studies suggest that the combination of the four proposed node features enhances DeFiGuard 's efficacy. Moreover, DeFiGuard classifies transactions within 0.892 to 5.317 seconds, which provides sufficient time for the victims (DApps and users) to take action to rescue their vulnerable funds. In conclusion, this research offers a significant step towards safeguarding the DeFi landscape from PMAs using GNNs.</description><subject>Accuracy</subject><subject>Classification algorithms</subject><subject>Decentralized applications</subject><subject>Decentralized finance</subject><subject>Finance</subject><subject>Flow graphs</subject><subject>GNN</subject><subject>Graph neural networks</subject><subject>Measurement</subject><subject>Peer-to-peer computing</subject><subject>price manipulation</subject><subject>Smart contracts</subject><subject>Training</subject><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtPwzAQhC0EEqVw58DBfyBl_Uhsc6taWpDKQ2pzjhxnA4bSVnZSxL8noT1wmtHOzB4-Qq4ZjBgDc7taTkYcuBwJqY0U5oQMuFA8AQ7ylAyYESZhQslzchHjB0DGtTYDkk9x5uetDdUdHdPX4B3SJ7vxu3ZtG7_d0Ck26P7cEsO-j31_nHmaR795o_Ngd-_0Gdtg150039vwGS_JWW3XEa-OOiT57H41eUgWL_PHyXiROKZNkzidpaXjWIvMalUZW6WglLOurirGlRLGZI6VoDNVW50qXhlWGpBliiXUoMWQwOGvC9sYA9bFLvgvG34KBkWPpeiwFD2W4oilm9wcJh4R_9WVBBBa_AL3Xl5E</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Wang, Dabao</creator><creator>Wu, Bang</creator><creator>Yuan, Xingliang</creator><creator>Wu, Lei</creator><creator>Zhou, Yajin</creator><creator>Cui, Helei</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3701-4946</orcidid><orcidid>https://orcid.org/0000-0003-1946-5361</orcidid><orcidid>https://orcid.org/0000-0003-1675-5283</orcidid><orcidid>https://orcid.org/0000-0001-7610-4736</orcidid><orcidid>https://orcid.org/0000-0002-4199-4318</orcidid></search><sort><creationdate>202411</creationdate><title>DeFiGuard: A Price Manipulation Detection Service in DeFi Using Graph Neural Networks</title><author>Wang, Dabao ; Wu, Bang ; Yuan, Xingliang ; Wu, Lei ; Zhou, Yajin ; Cui, Helei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c189t-c865bc2ef36a87d9ad5077cacfdd12773996c1b0867fa8572d91b904b5eb0f083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Classification algorithms</topic><topic>Decentralized applications</topic><topic>Decentralized finance</topic><topic>Finance</topic><topic>Flow graphs</topic><topic>GNN</topic><topic>Graph neural networks</topic><topic>Measurement</topic><topic>Peer-to-peer computing</topic><topic>price manipulation</topic><topic>Smart contracts</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dabao</creatorcontrib><creatorcontrib>Wu, Bang</creatorcontrib><creatorcontrib>Yuan, Xingliang</creatorcontrib><creatorcontrib>Wu, Lei</creatorcontrib><creatorcontrib>Zhou, Yajin</creatorcontrib><creatorcontrib>Cui, Helei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Dabao</au><au>Wu, Bang</au><au>Yuan, Xingliang</au><au>Wu, Lei</au><au>Zhou, Yajin</au><au>Cui, Helei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DeFiGuard: A Price Manipulation Detection Service in DeFi Using Graph Neural Networks</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2024-11</date><risdate>2024</risdate><volume>17</volume><issue>6</issue><spage>3345</spage><epage>3358</epage><pages>3345-3358</pages><issn>1939-1374</issn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract>The prosperity of Decentralized Finance (DeFi) unveils underlying risks, with reported losses surpassing 3.2 billion USD between 2018 and 2022 due to vulnerabilities in Decentralized Applications (DApps). One significant threat is the Price Manipulation Attack (PMA) that alters asset prices during transaction execution. As a result, PMA accounts for over 50 million USD in losses. To address the urgent need for efficient PMA detection, this article introduces a novel detection service, DeFiGuard , using Graph Neural Networks (GNNs). In this article, we propose cash flow graphs with four distinct features, which capture the trading behaviors from transactions. Moreover, DeFiGuard integrates transaction parsing, graph construction, model training, and PMA detection. Evaluations on the collected transactions demonstrate that DeFiGuard with GNN models outperforms the baseline MLP model and classical classification models in Accuracy, TPR, FPR, and AUC-ROC. The results of ablation studies suggest that the combination of the four proposed node features enhances DeFiGuard 's efficacy. Moreover, DeFiGuard classifies transactions within 0.892 to 5.317 seconds, which provides sufficient time for the victims (DApps and users) to take action to rescue their vulnerable funds. In conclusion, this research offers a significant step towards safeguarding the DeFi landscape from PMAs using GNNs.</abstract><pub>IEEE</pub><doi>10.1109/TSC.2024.3489439</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3701-4946</orcidid><orcidid>https://orcid.org/0000-0003-1946-5361</orcidid><orcidid>https://orcid.org/0000-0003-1675-5283</orcidid><orcidid>https://orcid.org/0000-0001-7610-4736</orcidid><orcidid>https://orcid.org/0000-0002-4199-4318</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1939-1374 |
ispartof | IEEE transactions on services computing, 2024-11, Vol.17 (6), p.3345-3358 |
issn | 1939-1374 2372-0204 |
language | eng |
recordid | cdi_ieee_primary_10740038 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Classification algorithms Decentralized applications Decentralized finance Finance Flow graphs GNN Graph neural networks Measurement Peer-to-peer computing price manipulation Smart contracts Training |
title | DeFiGuard: A Price Manipulation Detection Service in DeFi Using Graph Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DeFiGuard:%20A%20Price%20Manipulation%20Detection%20Service%20in%20DeFi%20Using%20Graph%20Neural%20Networks&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=Wang,%20Dabao&rft.date=2024-11&rft.volume=17&rft.issue=6&rft.spage=3345&rft.epage=3358&rft.pages=3345-3358&rft.issn=1939-1374&rft.eissn=2372-0204&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2024.3489439&rft_dat=%3Ccrossref_RIE%3E10_1109_TSC_2024_3489439%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10740038&rfr_iscdi=true |