MSFFNet: A Multi-Level Sparse Feature Fusion Network for Infrared Dim Small Target Detection
The sparse characteristics of target features poses significant challenges when using deep learning methods for infrared dim small targets. To tackle this issue, this paper proposes a novel multi-level sparse feature fusion network (MSFFNet) for detecting infrared dim small targets. A feature-level...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2024-10, p.1-14 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | |
creator | Ren, Xiangyang Jiao, Boyang Peng, Zhenming Kou, Renke Wang, Peng Li, Mingyuan |
description | The sparse characteristics of target features poses significant challenges when using deep learning methods for infrared dim small targets. To tackle this issue, this paper proposes a novel multi-level sparse feature fusion network (MSFFNet) for detecting infrared dim small targets. A feature-level sparse feature fusion network fuses target features of the same level and different depths to express small target features. A decision-level sparse feature fusion network fuses features from different decision spaces to improve decision confidence. To enrich the feature representation of the target, different levels of target global features are introduced into the decision-level sparse feature fusion network. During the network training process, a deep joint supervision training strategy is proposed to supervise and train the multi-level sparse feature fusion network, aiming to fully learn the feature representation of the target. According to the experimental results, the proposed infrared dim small targets detection method outperforms existing popular methods under sparse target features. |
doi_str_mv | 10.1109/JSTARS.2024.3488698 |
format | Article |
fullrecord | <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_10739402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10739402</ieee_id><sourcerecordid>10739402</sourcerecordid><originalsourceid>FETCH-LOGICAL-i668-54c3dfd706098b90d278d10797fb7181b9983535c1ad58e29550b3137f1a49db3</originalsourceid><addsrcrecordid>eNotzM1Og0AUQOFZaGKtPoEu5gXA-YOZ6460UmuoJsLSpBmYi0GhNMNU49tLoquz-XIIueEs5pzB3VNZZa9lLJhQsVTGpGDOyIKDhIgrpi7I5TR9MJYKDXJB3nZlnj9juKcZ3Z360EUFfmFPy6P1E9IcbTj5uaepGw90ht-j_6Tt6On20Hrr0dF1N9BysH1PK-vfMdA1BmzC7K_IeWv7Ca__uyRV_lCtHqPiZbNdZUXUpamJEtVI1zrNUgamBuaENo4zDbqtNTe8BjAykUnDrUsMCkgSVksudcutAlfLJbn923aIuD_6brD-Zz8fJCgm5C8Jw08a</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MSFFNet: A Multi-Level Sparse Feature Fusion Network for Infrared Dim Small Target Detection</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ren, Xiangyang ; Jiao, Boyang ; Peng, Zhenming ; Kou, Renke ; Wang, Peng ; Li, Mingyuan</creator><creatorcontrib>Ren, Xiangyang ; Jiao, Boyang ; Peng, Zhenming ; Kou, Renke ; Wang, Peng ; Li, Mingyuan</creatorcontrib><description>The sparse characteristics of target features poses significant challenges when using deep learning methods for infrared dim small targets. To tackle this issue, this paper proposes a novel multi-level sparse feature fusion network (MSFFNet) for detecting infrared dim small targets. A feature-level sparse feature fusion network fuses target features of the same level and different depths to express small target features. A decision-level sparse feature fusion network fuses features from different decision spaces to improve decision confidence. To enrich the feature representation of the target, different levels of target global features are introduced into the decision-level sparse feature fusion network. During the network training process, a deep joint supervision training strategy is proposed to supervise and train the multi-level sparse feature fusion network, aiming to fully learn the feature representation of the target. According to the experimental results, the proposed infrared dim small targets detection method outperforms existing popular methods under sparse target features.</description><identifier>ISSN: 1939-1404</identifier><identifier>DOI: 10.1109/JSTARS.2024.3488698</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Classification algorithms ; Decision-level sparse feature fusion ; deep joint supervision ; Deep learning ; Feature extraction ; feature-level sparse feature fusion ; infrared small target ; Interference ; Noise ; Object detection ; Shape ; Training ; YOLO</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2024-10, p.1-14</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2116-9545 ; 0000-0002-4148-3331 ; 0000-0001-5864-6160 ; 0000-0001-5893-3127</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,27933,27934</link.rule.ids></links><search><creatorcontrib>Ren, Xiangyang</creatorcontrib><creatorcontrib>Jiao, Boyang</creatorcontrib><creatorcontrib>Peng, Zhenming</creatorcontrib><creatorcontrib>Kou, Renke</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Li, Mingyuan</creatorcontrib><title>MSFFNet: A Multi-Level Sparse Feature Fusion Network for Infrared Dim Small Target Detection</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>The sparse characteristics of target features poses significant challenges when using deep learning methods for infrared dim small targets. To tackle this issue, this paper proposes a novel multi-level sparse feature fusion network (MSFFNet) for detecting infrared dim small targets. A feature-level sparse feature fusion network fuses target features of the same level and different depths to express small target features. A decision-level sparse feature fusion network fuses features from different decision spaces to improve decision confidence. To enrich the feature representation of the target, different levels of target global features are introduced into the decision-level sparse feature fusion network. During the network training process, a deep joint supervision training strategy is proposed to supervise and train the multi-level sparse feature fusion network, aiming to fully learn the feature representation of the target. According to the experimental results, the proposed infrared dim small targets detection method outperforms existing popular methods under sparse target features.</description><subject>Accuracy</subject><subject>Classification algorithms</subject><subject>Decision-level sparse feature fusion</subject><subject>deep joint supervision</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>feature-level sparse feature fusion</subject><subject>infrared small target</subject><subject>Interference</subject><subject>Noise</subject><subject>Object detection</subject><subject>Shape</subject><subject>Training</subject><subject>YOLO</subject><issn>1939-1404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNotzM1Og0AUQOFZaGKtPoEu5gXA-YOZ6460UmuoJsLSpBmYi0GhNMNU49tLoquz-XIIueEs5pzB3VNZZa9lLJhQsVTGpGDOyIKDhIgrpi7I5TR9MJYKDXJB3nZlnj9juKcZ3Z360EUFfmFPy6P1E9IcbTj5uaepGw90ht-j_6Tt6On20Hrr0dF1N9BysH1PK-vfMdA1BmzC7K_IeWv7Ca__uyRV_lCtHqPiZbNdZUXUpamJEtVI1zrNUgamBuaENo4zDbqtNTe8BjAykUnDrUsMCkgSVksudcutAlfLJbn923aIuD_6brD-Zz8fJCgm5C8Jw08a</recordid><startdate>20241030</startdate><enddate>20241030</enddate><creator>Ren, Xiangyang</creator><creator>Jiao, Boyang</creator><creator>Peng, Zhenming</creator><creator>Kou, Renke</creator><creator>Wang, Peng</creator><creator>Li, Mingyuan</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0003-2116-9545</orcidid><orcidid>https://orcid.org/0000-0002-4148-3331</orcidid><orcidid>https://orcid.org/0000-0001-5864-6160</orcidid><orcidid>https://orcid.org/0000-0001-5893-3127</orcidid></search><sort><creationdate>20241030</creationdate><title>MSFFNet: A Multi-Level Sparse Feature Fusion Network for Infrared Dim Small Target Detection</title><author>Ren, Xiangyang ; Jiao, Boyang ; Peng, Zhenming ; Kou, Renke ; Wang, Peng ; Li, Mingyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i668-54c3dfd706098b90d278d10797fb7181b9983535c1ad58e29550b3137f1a49db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Classification algorithms</topic><topic>Decision-level sparse feature fusion</topic><topic>deep joint supervision</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>feature-level sparse feature fusion</topic><topic>infrared small target</topic><topic>Interference</topic><topic>Noise</topic><topic>Object detection</topic><topic>Shape</topic><topic>Training</topic><topic>YOLO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Xiangyang</creatorcontrib><creatorcontrib>Jiao, Boyang</creatorcontrib><creatorcontrib>Peng, Zhenming</creatorcontrib><creatorcontrib>Kou, Renke</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Li, Mingyuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Xiangyang</au><au>Jiao, Boyang</au><au>Peng, Zhenming</au><au>Kou, Renke</au><au>Wang, Peng</au><au>Li, Mingyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MSFFNet: A Multi-Level Sparse Feature Fusion Network for Infrared Dim Small Target Detection</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2024-10-30</date><risdate>2024</risdate><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1939-1404</issn><coden>IJSTHZ</coden><abstract>The sparse characteristics of target features poses significant challenges when using deep learning methods for infrared dim small targets. To tackle this issue, this paper proposes a novel multi-level sparse feature fusion network (MSFFNet) for detecting infrared dim small targets. A feature-level sparse feature fusion network fuses target features of the same level and different depths to express small target features. A decision-level sparse feature fusion network fuses features from different decision spaces to improve decision confidence. To enrich the feature representation of the target, different levels of target global features are introduced into the decision-level sparse feature fusion network. During the network training process, a deep joint supervision training strategy is proposed to supervise and train the multi-level sparse feature fusion network, aiming to fully learn the feature representation of the target. According to the experimental results, the proposed infrared dim small targets detection method outperforms existing popular methods under sparse target features.</abstract><pub>IEEE</pub><doi>10.1109/JSTARS.2024.3488698</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2116-9545</orcidid><orcidid>https://orcid.org/0000-0002-4148-3331</orcidid><orcidid>https://orcid.org/0000-0001-5864-6160</orcidid><orcidid>https://orcid.org/0000-0001-5893-3127</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2024-10, p.1-14 |
issn | 1939-1404 |
language | eng |
recordid | cdi_ieee_primary_10739402 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Classification algorithms Decision-level sparse feature fusion deep joint supervision Deep learning Feature extraction feature-level sparse feature fusion infrared small target Interference Noise Object detection Shape Training YOLO |
title | MSFFNet: A Multi-Level Sparse Feature Fusion Network for Infrared Dim Small Target Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T10%3A50%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MSFFNet:%20A%20Multi-Level%20Sparse%20Feature%20Fusion%20Network%20for%20Infrared%20Dim%20Small%20Target%20Detection&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Ren,%20Xiangyang&rft.date=2024-10-30&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1939-1404&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2024.3488698&rft_dat=%3Cieee%3E10739402%3C/ieee%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10739402&rfr_iscdi=true |