MSFFNet: A Multi-Level Sparse Feature Fusion Network for Infrared Dim Small Target Detection

The sparse characteristics of target features poses significant challenges when using deep learning methods for infrared dim small targets. To tackle this issue, this paper proposes a novel multi-level sparse feature fusion network (MSFFNet) for detecting infrared dim small targets. A feature-level...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2024-10, p.1-14
Hauptverfasser: Ren, Xiangyang, Jiao, Boyang, Peng, Zhenming, Kou, Renke, Wang, Peng, Li, Mingyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume
creator Ren, Xiangyang
Jiao, Boyang
Peng, Zhenming
Kou, Renke
Wang, Peng
Li, Mingyuan
description The sparse characteristics of target features poses significant challenges when using deep learning methods for infrared dim small targets. To tackle this issue, this paper proposes a novel multi-level sparse feature fusion network (MSFFNet) for detecting infrared dim small targets. A feature-level sparse feature fusion network fuses target features of the same level and different depths to express small target features. A decision-level sparse feature fusion network fuses features from different decision spaces to improve decision confidence. To enrich the feature representation of the target, different levels of target global features are introduced into the decision-level sparse feature fusion network. During the network training process, a deep joint supervision training strategy is proposed to supervise and train the multi-level sparse feature fusion network, aiming to fully learn the feature representation of the target. According to the experimental results, the proposed infrared dim small targets detection method outperforms existing popular methods under sparse target features.
doi_str_mv 10.1109/JSTARS.2024.3488698
format Article
fullrecord <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_10739402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10739402</ieee_id><sourcerecordid>10739402</sourcerecordid><originalsourceid>FETCH-LOGICAL-i668-54c3dfd706098b90d278d10797fb7181b9983535c1ad58e29550b3137f1a49db3</originalsourceid><addsrcrecordid>eNotzM1Og0AUQOFZaGKtPoEu5gXA-YOZ6460UmuoJsLSpBmYi0GhNMNU49tLoquz-XIIueEs5pzB3VNZZa9lLJhQsVTGpGDOyIKDhIgrpi7I5TR9MJYKDXJB3nZlnj9juKcZ3Z360EUFfmFPy6P1E9IcbTj5uaepGw90ht-j_6Tt6On20Hrr0dF1N9BysH1PK-vfMdA1BmzC7K_IeWv7Ca__uyRV_lCtHqPiZbNdZUXUpamJEtVI1zrNUgamBuaENo4zDbqtNTe8BjAykUnDrUsMCkgSVksudcutAlfLJbn923aIuD_6brD-Zz8fJCgm5C8Jw08a</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MSFFNet: A Multi-Level Sparse Feature Fusion Network for Infrared Dim Small Target Detection</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ren, Xiangyang ; Jiao, Boyang ; Peng, Zhenming ; Kou, Renke ; Wang, Peng ; Li, Mingyuan</creator><creatorcontrib>Ren, Xiangyang ; Jiao, Boyang ; Peng, Zhenming ; Kou, Renke ; Wang, Peng ; Li, Mingyuan</creatorcontrib><description>The sparse characteristics of target features poses significant challenges when using deep learning methods for infrared dim small targets. To tackle this issue, this paper proposes a novel multi-level sparse feature fusion network (MSFFNet) for detecting infrared dim small targets. A feature-level sparse feature fusion network fuses target features of the same level and different depths to express small target features. A decision-level sparse feature fusion network fuses features from different decision spaces to improve decision confidence. To enrich the feature representation of the target, different levels of target global features are introduced into the decision-level sparse feature fusion network. During the network training process, a deep joint supervision training strategy is proposed to supervise and train the multi-level sparse feature fusion network, aiming to fully learn the feature representation of the target. According to the experimental results, the proposed infrared dim small targets detection method outperforms existing popular methods under sparse target features.</description><identifier>ISSN: 1939-1404</identifier><identifier>DOI: 10.1109/JSTARS.2024.3488698</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Classification algorithms ; Decision-level sparse feature fusion ; deep joint supervision ; Deep learning ; Feature extraction ; feature-level sparse feature fusion ; infrared small target ; Interference ; Noise ; Object detection ; Shape ; Training ; YOLO</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2024-10, p.1-14</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2116-9545 ; 0000-0002-4148-3331 ; 0000-0001-5864-6160 ; 0000-0001-5893-3127</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,27933,27934</link.rule.ids></links><search><creatorcontrib>Ren, Xiangyang</creatorcontrib><creatorcontrib>Jiao, Boyang</creatorcontrib><creatorcontrib>Peng, Zhenming</creatorcontrib><creatorcontrib>Kou, Renke</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Li, Mingyuan</creatorcontrib><title>MSFFNet: A Multi-Level Sparse Feature Fusion Network for Infrared Dim Small Target Detection</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>The sparse characteristics of target features poses significant challenges when using deep learning methods for infrared dim small targets. To tackle this issue, this paper proposes a novel multi-level sparse feature fusion network (MSFFNet) for detecting infrared dim small targets. A feature-level sparse feature fusion network fuses target features of the same level and different depths to express small target features. A decision-level sparse feature fusion network fuses features from different decision spaces to improve decision confidence. To enrich the feature representation of the target, different levels of target global features are introduced into the decision-level sparse feature fusion network. During the network training process, a deep joint supervision training strategy is proposed to supervise and train the multi-level sparse feature fusion network, aiming to fully learn the feature representation of the target. According to the experimental results, the proposed infrared dim small targets detection method outperforms existing popular methods under sparse target features.</description><subject>Accuracy</subject><subject>Classification algorithms</subject><subject>Decision-level sparse feature fusion</subject><subject>deep joint supervision</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>feature-level sparse feature fusion</subject><subject>infrared small target</subject><subject>Interference</subject><subject>Noise</subject><subject>Object detection</subject><subject>Shape</subject><subject>Training</subject><subject>YOLO</subject><issn>1939-1404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNotzM1Og0AUQOFZaGKtPoEu5gXA-YOZ6460UmuoJsLSpBmYi0GhNMNU49tLoquz-XIIueEs5pzB3VNZZa9lLJhQsVTGpGDOyIKDhIgrpi7I5TR9MJYKDXJB3nZlnj9juKcZ3Z360EUFfmFPy6P1E9IcbTj5uaepGw90ht-j_6Tt6On20Hrr0dF1N9BysH1PK-vfMdA1BmzC7K_IeWv7Ca__uyRV_lCtHqPiZbNdZUXUpamJEtVI1zrNUgamBuaENo4zDbqtNTe8BjAykUnDrUsMCkgSVksudcutAlfLJbn923aIuD_6brD-Zz8fJCgm5C8Jw08a</recordid><startdate>20241030</startdate><enddate>20241030</enddate><creator>Ren, Xiangyang</creator><creator>Jiao, Boyang</creator><creator>Peng, Zhenming</creator><creator>Kou, Renke</creator><creator>Wang, Peng</creator><creator>Li, Mingyuan</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0003-2116-9545</orcidid><orcidid>https://orcid.org/0000-0002-4148-3331</orcidid><orcidid>https://orcid.org/0000-0001-5864-6160</orcidid><orcidid>https://orcid.org/0000-0001-5893-3127</orcidid></search><sort><creationdate>20241030</creationdate><title>MSFFNet: A Multi-Level Sparse Feature Fusion Network for Infrared Dim Small Target Detection</title><author>Ren, Xiangyang ; Jiao, Boyang ; Peng, Zhenming ; Kou, Renke ; Wang, Peng ; Li, Mingyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i668-54c3dfd706098b90d278d10797fb7181b9983535c1ad58e29550b3137f1a49db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Classification algorithms</topic><topic>Decision-level sparse feature fusion</topic><topic>deep joint supervision</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>feature-level sparse feature fusion</topic><topic>infrared small target</topic><topic>Interference</topic><topic>Noise</topic><topic>Object detection</topic><topic>Shape</topic><topic>Training</topic><topic>YOLO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Xiangyang</creatorcontrib><creatorcontrib>Jiao, Boyang</creatorcontrib><creatorcontrib>Peng, Zhenming</creatorcontrib><creatorcontrib>Kou, Renke</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Li, Mingyuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Xiangyang</au><au>Jiao, Boyang</au><au>Peng, Zhenming</au><au>Kou, Renke</au><au>Wang, Peng</au><au>Li, Mingyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MSFFNet: A Multi-Level Sparse Feature Fusion Network for Infrared Dim Small Target Detection</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2024-10-30</date><risdate>2024</risdate><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1939-1404</issn><coden>IJSTHZ</coden><abstract>The sparse characteristics of target features poses significant challenges when using deep learning methods for infrared dim small targets. To tackle this issue, this paper proposes a novel multi-level sparse feature fusion network (MSFFNet) for detecting infrared dim small targets. A feature-level sparse feature fusion network fuses target features of the same level and different depths to express small target features. A decision-level sparse feature fusion network fuses features from different decision spaces to improve decision confidence. To enrich the feature representation of the target, different levels of target global features are introduced into the decision-level sparse feature fusion network. During the network training process, a deep joint supervision training strategy is proposed to supervise and train the multi-level sparse feature fusion network, aiming to fully learn the feature representation of the target. According to the experimental results, the proposed infrared dim small targets detection method outperforms existing popular methods under sparse target features.</abstract><pub>IEEE</pub><doi>10.1109/JSTARS.2024.3488698</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2116-9545</orcidid><orcidid>https://orcid.org/0000-0002-4148-3331</orcidid><orcidid>https://orcid.org/0000-0001-5864-6160</orcidid><orcidid>https://orcid.org/0000-0001-5893-3127</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2024-10, p.1-14
issn 1939-1404
language eng
recordid cdi_ieee_primary_10739402
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Classification algorithms
Decision-level sparse feature fusion
deep joint supervision
Deep learning
Feature extraction
feature-level sparse feature fusion
infrared small target
Interference
Noise
Object detection
Shape
Training
YOLO
title MSFFNet: A Multi-Level Sparse Feature Fusion Network for Infrared Dim Small Target Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T10%3A50%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MSFFNet:%20A%20Multi-Level%20Sparse%20Feature%20Fusion%20Network%20for%20Infrared%20Dim%20Small%20Target%20Detection&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Ren,%20Xiangyang&rft.date=2024-10-30&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1939-1404&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2024.3488698&rft_dat=%3Cieee%3E10739402%3C/ieee%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10739402&rfr_iscdi=true