S²GFormer: A Transformer and Graph Convolution Combining Framework for Hyperspectral Image Classification

Transformer-based methods have a great ability to model nonlocal interactions between spectral and spatial information, while the local features are easily ignored. Graph convolutional neural networks (GCNs) tend to do well in exploiting neighborhood vertex interactions based on their unique aggrega...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-14
Hauptverfasser: Huang, Shiqi, Ding, Yao, Zhang, Zhili, Yang, Aitao, Yang, Shujun, Cai, Yaoming, Cai, Weiwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!