Heterogeneous Federated Learning via Generative Model-Aided Knowledge Distillation in the Edge
Federated Learning (FL) has been popular recently as a framework for training Machine Learning (ML) models in a distributed and privacy-preserving manner. Traditional FL frameworks often struggle with model and statistical heterogeneity among participating clients, impacting learning performance and...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2024-10, p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE internet of things journal |
container_volume | |
creator | Sun, Chuanneng Jiang, Tingcong Pompili, Dario |
description | Federated Learning (FL) has been popular recently as a framework for training Machine Learning (ML) models in a distributed and privacy-preserving manner. Traditional FL frameworks often struggle with model and statistical heterogeneity among participating clients, impacting learning performance and practicality. To overcome these fundamental limitations, we introduce Fed2KD+, a novel FL framework that leverages a set of tiny unified models and Conditional Variational Auto-Encoders (CVAEs) to enable FL training for heterogeneous models between network clients. Using forward and backward distillation processes, Fed2KD+ allows a seamless exchange of knowledge, mitigating data and heterogeneity problems of the model. Moreover, we propose a cosine similarity penalty in the loss function of CVAE+ to enhance the generalizability of CVAE for non-IID scenarios, improving the adaptability and efficiency of the framework. Furthermore, our framework design incorporates a co-design with Radio Access Network (RAN) architecture, reducing the fronthaul traffic volume and improving scalability. Extensive evaluations of one image and two IoT datasets demonstrate the superiority of Fed2KD+ in achieving higher accuracy and faster convergence compared to existing methods, including FedAvg, FedMD, and FedGen. Furthermore, we also performed hardware profiling on the Raspberry Pi and NVIDIA Jetson Nano to quantify the additional resources required to train the unified and CVAE+ models. |
doi_str_mv | 10.1109/JIOT.2024.3488565 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10738280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10738280</ieee_id><sourcerecordid>10_1109_JIOT_2024_3488565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c630-8f814d35c9a049cd7ee4b8462bef52b30d07d17403c3591bf8ccfbe59f871d3d3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EElXpByCx8A-kjF-Js6xKX1DUTddEiT0uRiFBdiji73FFF13NaO65sziE3DOYMgbl4_Nmt59y4HIqpNYqV1dkxAUvMpnn_PpivyWTGD8AINUUK_MReVvjgKE_YIf9d6RLtBjqAS3dYh063x3o0dd0leJ09kekr73FNpt5m5iXrv9p0R6QPvk4-LZNSN9R39HhHekiBXfkxtVtxMl5jsl-udjP19l2t9rMZ9vM5AIy7TSTVihT1iBLYwtE2WiZ8wad4o0AC4VlhQRhhCpZ47QxrkFVOl0wK6wYE_b_1oQ-xoCu-gr-sw6_FYPqpKg6KapOiqqzotR5-O94RLzgC6G5BvEHFTZjbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heterogeneous Federated Learning via Generative Model-Aided Knowledge Distillation in the Edge</title><source>IEEE Electronic Library (IEL)</source><creator>Sun, Chuanneng ; Jiang, Tingcong ; Pompili, Dario</creator><creatorcontrib>Sun, Chuanneng ; Jiang, Tingcong ; Pompili, Dario</creatorcontrib><description>Federated Learning (FL) has been popular recently as a framework for training Machine Learning (ML) models in a distributed and privacy-preserving manner. Traditional FL frameworks often struggle with model and statistical heterogeneity among participating clients, impacting learning performance and practicality. To overcome these fundamental limitations, we introduce Fed2KD+, a novel FL framework that leverages a set of tiny unified models and Conditional Variational Auto-Encoders (CVAEs) to enable FL training for heterogeneous models between network clients. Using forward and backward distillation processes, Fed2KD+ allows a seamless exchange of knowledge, mitigating data and heterogeneity problems of the model. Moreover, we propose a cosine similarity penalty in the loss function of CVAE+ to enhance the generalizability of CVAE for non-IID scenarios, improving the adaptability and efficiency of the framework. Furthermore, our framework design incorporates a co-design with Radio Access Network (RAN) architecture, reducing the fronthaul traffic volume and improving scalability. Extensive evaluations of one image and two IoT datasets demonstrate the superiority of Fed2KD+ in achieving higher accuracy and faster convergence compared to existing methods, including FedAvg, FedMD, and FedGen. Furthermore, we also performed hardware profiling on the Raspberry Pi and NVIDIA Jetson Nano to quantify the additional resources required to train the unified and CVAE+ models.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3488565</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Convergence ; Data models ; Distributed databases ; edge learning ; Federated learning ; Internet of Things ; knowledge distillation ; model heterogeneity ; Privacy ; Radio access networks ; Servers ; Training</subject><ispartof>IEEE internet of things journal, 2024-10, p.1-1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7524-9044 ; 0000-0002-5365-509X ; 0009-0008-8823-0615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10738280$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10738280$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, Chuanneng</creatorcontrib><creatorcontrib>Jiang, Tingcong</creatorcontrib><creatorcontrib>Pompili, Dario</creatorcontrib><title>Heterogeneous Federated Learning via Generative Model-Aided Knowledge Distillation in the Edge</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Federated Learning (FL) has been popular recently as a framework for training Machine Learning (ML) models in a distributed and privacy-preserving manner. Traditional FL frameworks often struggle with model and statistical heterogeneity among participating clients, impacting learning performance and practicality. To overcome these fundamental limitations, we introduce Fed2KD+, a novel FL framework that leverages a set of tiny unified models and Conditional Variational Auto-Encoders (CVAEs) to enable FL training for heterogeneous models between network clients. Using forward and backward distillation processes, Fed2KD+ allows a seamless exchange of knowledge, mitigating data and heterogeneity problems of the model. Moreover, we propose a cosine similarity penalty in the loss function of CVAE+ to enhance the generalizability of CVAE for non-IID scenarios, improving the adaptability and efficiency of the framework. Furthermore, our framework design incorporates a co-design with Radio Access Network (RAN) architecture, reducing the fronthaul traffic volume and improving scalability. Extensive evaluations of one image and two IoT datasets demonstrate the superiority of Fed2KD+ in achieving higher accuracy and faster convergence compared to existing methods, including FedAvg, FedMD, and FedGen. Furthermore, we also performed hardware profiling on the Raspberry Pi and NVIDIA Jetson Nano to quantify the additional resources required to train the unified and CVAE+ models.</description><subject>Computational modeling</subject><subject>Convergence</subject><subject>Data models</subject><subject>Distributed databases</subject><subject>edge learning</subject><subject>Federated learning</subject><subject>Internet of Things</subject><subject>knowledge distillation</subject><subject>model heterogeneity</subject><subject>Privacy</subject><subject>Radio access networks</subject><subject>Servers</subject><subject>Training</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EElXpByCx8A-kjF-Js6xKX1DUTddEiT0uRiFBdiji73FFF13NaO65sziE3DOYMgbl4_Nmt59y4HIqpNYqV1dkxAUvMpnn_PpivyWTGD8AINUUK_MReVvjgKE_YIf9d6RLtBjqAS3dYh063x3o0dd0leJ09kekr73FNpt5m5iXrv9p0R6QPvk4-LZNSN9R39HhHekiBXfkxtVtxMl5jsl-udjP19l2t9rMZ9vM5AIy7TSTVihT1iBLYwtE2WiZ8wad4o0AC4VlhQRhhCpZ47QxrkFVOl0wK6wYE_b_1oQ-xoCu-gr-sw6_FYPqpKg6KapOiqqzotR5-O94RLzgC6G5BvEHFTZjbg</recordid><startdate>20241029</startdate><enddate>20241029</enddate><creator>Sun, Chuanneng</creator><creator>Jiang, Tingcong</creator><creator>Pompili, Dario</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7524-9044</orcidid><orcidid>https://orcid.org/0000-0002-5365-509X</orcidid><orcidid>https://orcid.org/0009-0008-8823-0615</orcidid></search><sort><creationdate>20241029</creationdate><title>Heterogeneous Federated Learning via Generative Model-Aided Knowledge Distillation in the Edge</title><author>Sun, Chuanneng ; Jiang, Tingcong ; Pompili, Dario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c630-8f814d35c9a049cd7ee4b8462bef52b30d07d17403c3591bf8ccfbe59f871d3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computational modeling</topic><topic>Convergence</topic><topic>Data models</topic><topic>Distributed databases</topic><topic>edge learning</topic><topic>Federated learning</topic><topic>Internet of Things</topic><topic>knowledge distillation</topic><topic>model heterogeneity</topic><topic>Privacy</topic><topic>Radio access networks</topic><topic>Servers</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Sun, Chuanneng</creatorcontrib><creatorcontrib>Jiang, Tingcong</creatorcontrib><creatorcontrib>Pompili, Dario</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Chuanneng</au><au>Jiang, Tingcong</au><au>Pompili, Dario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneous Federated Learning via Generative Model-Aided Knowledge Distillation in the Edge</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-10-29</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Federated Learning (FL) has been popular recently as a framework for training Machine Learning (ML) models in a distributed and privacy-preserving manner. Traditional FL frameworks often struggle with model and statistical heterogeneity among participating clients, impacting learning performance and practicality. To overcome these fundamental limitations, we introduce Fed2KD+, a novel FL framework that leverages a set of tiny unified models and Conditional Variational Auto-Encoders (CVAEs) to enable FL training for heterogeneous models between network clients. Using forward and backward distillation processes, Fed2KD+ allows a seamless exchange of knowledge, mitigating data and heterogeneity problems of the model. Moreover, we propose a cosine similarity penalty in the loss function of CVAE+ to enhance the generalizability of CVAE for non-IID scenarios, improving the adaptability and efficiency of the framework. Furthermore, our framework design incorporates a co-design with Radio Access Network (RAN) architecture, reducing the fronthaul traffic volume and improving scalability. Extensive evaluations of one image and two IoT datasets demonstrate the superiority of Fed2KD+ in achieving higher accuracy and faster convergence compared to existing methods, including FedAvg, FedMD, and FedGen. Furthermore, we also performed hardware profiling on the Raspberry Pi and NVIDIA Jetson Nano to quantify the additional resources required to train the unified and CVAE+ models.</abstract><pub>IEEE</pub><doi>10.1109/JIOT.2024.3488565</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7524-9044</orcidid><orcidid>https://orcid.org/0000-0002-5365-509X</orcidid><orcidid>https://orcid.org/0009-0008-8823-0615</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2024-10, p.1-1 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_ieee_primary_10738280 |
source | IEEE Electronic Library (IEL) |
subjects | Computational modeling Convergence Data models Distributed databases edge learning Federated learning Internet of Things knowledge distillation model heterogeneity Privacy Radio access networks Servers Training |
title | Heterogeneous Federated Learning via Generative Model-Aided Knowledge Distillation in the Edge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A36%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneous%20Federated%20Learning%20via%20Generative%20Model-Aided%20Knowledge%20Distillation%20in%20the%20Edge&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Sun,%20Chuanneng&rft.date=2024-10-29&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3488565&rft_dat=%3Ccrossref_RIE%3E10_1109_JIOT_2024_3488565%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10738280&rfr_iscdi=true |