A Label Refining Framework Based on Road Matching and Integration Algorithm for Road Extraction

Road network plays an important role in the fields of navigation, urban planning, and transportation. Extracting road network data from imagery based on machine learning models is an efficient and economical method for obtaining road network data. In order to save labor costs, crowdsourced data can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2024, Vol.17, p.19548-19564
Hauptverfasser: Ma, Guodong, Zhang, Meng, Yang, Jian, Shi, Zekai, Ren, Haoyuan, Zhang, Yaowei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19564
container_issue
container_start_page 19548
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 17
creator Ma, Guodong
Zhang, Meng
Yang, Jian
Shi, Zekai
Ren, Haoyuan
Zhang, Yaowei
description Road network plays an important role in the fields of navigation, urban planning, and transportation. Extracting road network data from imagery based on machine learning models is an efficient and economical method for obtaining road network data. In order to save labor costs, crowdsourced data can be employed to automatically acquire the labels for model training. In response to the current challenges in road extraction, such as the limited number of labeled samples, low precision of sample labels generated from crowdsourced data, and difficulty in obtaining accurate road label data, which lead to low-quality, incomplete, and inaccurate road extraction, this study proposes a label refining framework based on a road matching and integrate algorithm. Labels are generated from OpenStreetMap (OSM) vector data, and roads are extracted from very high resolution orthoimage using the U-net model. The extracted roads are then matched and integrated with the original data to generate refined labels, which are employed for further model training and road extraction. Experimental results demonstrate that this process can overcome the poor quality of samples directly generated from the OSM data, i.e., the label refining framework led to significant improvements with respect to the completeness, accuracy, and quality of the road network extraction results.
doi_str_mv 10.1109/JSTARS.2024.3486744
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10736971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10736971</ieee_id><doaj_id>oai_doaj_org_article_4e017b2857b849dea7a1193034199abb</doaj_id><sourcerecordid>3127769505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-37093c3d9f901e2458186893f652ad62e28768f7d97675d6765aaaa215b49dc63</originalsourceid><addsrcrecordid>eNpNUclOwzAQtRBIlOUL4GCJc4r35VgQhaIipAJnaxI7JaWNwQkC_h6XIMRcRpp5783yEDqhZEwpsee3D4-TxcOYESbGXBilhdhBI0YlLajkcheNqOW2oIKIfXTQdStCFNOWj5Cb4DmUYY0XoW7apl3iaYJN-IjpBV9AFzyOLV5E8PgO-up5C4DW41nbh2WCvsndyXoZU9M_b3Ad04C9-uwTVNvuEdqrYd2F4998iJ6mV4-XN8X8_np2OZkXFTO2L7gmllfc29oSGpiQhhplLK-VZOAVC8xoZWrtrVZaeqWVhBz5wlJYXyl-iGaDro-wcq-p2UD6chEa91OIaekg9U21Dk4EQnXJjNSlyeQAGmh-D-GCWgtlmbXOBq3XFN_eQ9e7VXxPbV7fccq0VlYSmVF8QFUpdl0K9d9UStzWFTe44rauuF9XMut0YDUhhH8MzZXVlH8DqNyG9Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127769505</pqid></control><display><type>article</type><title>A Label Refining Framework Based on Road Matching and Integration Algorithm for Road Extraction</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ma, Guodong ; Zhang, Meng ; Yang, Jian ; Shi, Zekai ; Ren, Haoyuan ; Zhang, Yaowei</creator><creatorcontrib>Ma, Guodong ; Zhang, Meng ; Yang, Jian ; Shi, Zekai ; Ren, Haoyuan ; Zhang, Yaowei</creatorcontrib><description>Road network plays an important role in the fields of navigation, urban planning, and transportation. Extracting road network data from imagery based on machine learning models is an efficient and economical method for obtaining road network data. In order to save labor costs, crowdsourced data can be employed to automatically acquire the labels for model training. In response to the current challenges in road extraction, such as the limited number of labeled samples, low precision of sample labels generated from crowdsourced data, and difficulty in obtaining accurate road label data, which lead to low-quality, incomplete, and inaccurate road extraction, this study proposes a label refining framework based on a road matching and integrate algorithm. Labels are generated from OpenStreetMap (OSM) vector data, and roads are extracted from very high resolution orthoimage using the U-net model. The extracted roads are then matched and integrated with the original data to generate refined labels, which are employed for further model training and road extraction. Experimental results demonstrate that this process can overcome the poor quality of samples directly generated from the OSM data, i.e., the label refining framework led to significant improvements with respect to the completeness, accuracy, and quality of the road network extraction results.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2024.3486744</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Biological system modeling ; Crowdsourcing ; Data mining ; Data models ; Digital mapping ; Image acquisition ; Image resolution ; Labels ; Labour costs ; Machine learning ; Matching ; Navigation ; OpenStreetMap ; Refining ; Remote sensing ; road extraction ; road matching ; Roads ; Roads &amp; highways ; satellite imagery ; Semantic segmentation ; Training ; Transportation networks ; U-Net ; Urban planning ; Vectors</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.19548-19564</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-37093c3d9f901e2458186893f652ad62e28768f7d97675d6765aaaa215b49dc63</cites><orcidid>0000-0002-8744-2922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,2096,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Ma, Guodong</creatorcontrib><creatorcontrib>Zhang, Meng</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Shi, Zekai</creatorcontrib><creatorcontrib>Ren, Haoyuan</creatorcontrib><creatorcontrib>Zhang, Yaowei</creatorcontrib><title>A Label Refining Framework Based on Road Matching and Integration Algorithm for Road Extraction</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Road network plays an important role in the fields of navigation, urban planning, and transportation. Extracting road network data from imagery based on machine learning models is an efficient and economical method for obtaining road network data. In order to save labor costs, crowdsourced data can be employed to automatically acquire the labels for model training. In response to the current challenges in road extraction, such as the limited number of labeled samples, low precision of sample labels generated from crowdsourced data, and difficulty in obtaining accurate road label data, which lead to low-quality, incomplete, and inaccurate road extraction, this study proposes a label refining framework based on a road matching and integrate algorithm. Labels are generated from OpenStreetMap (OSM) vector data, and roads are extracted from very high resolution orthoimage using the U-net model. The extracted roads are then matched and integrated with the original data to generate refined labels, which are employed for further model training and road extraction. Experimental results demonstrate that this process can overcome the poor quality of samples directly generated from the OSM data, i.e., the label refining framework led to significant improvements with respect to the completeness, accuracy, and quality of the road network extraction results.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Biological system modeling</subject><subject>Crowdsourcing</subject><subject>Data mining</subject><subject>Data models</subject><subject>Digital mapping</subject><subject>Image acquisition</subject><subject>Image resolution</subject><subject>Labels</subject><subject>Labour costs</subject><subject>Machine learning</subject><subject>Matching</subject><subject>Navigation</subject><subject>OpenStreetMap</subject><subject>Refining</subject><subject>Remote sensing</subject><subject>road extraction</subject><subject>road matching</subject><subject>Roads</subject><subject>Roads &amp; highways</subject><subject>satellite imagery</subject><subject>Semantic segmentation</subject><subject>Training</subject><subject>Transportation networks</subject><subject>U-Net</subject><subject>Urban planning</subject><subject>Vectors</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUclOwzAQtRBIlOUL4GCJc4r35VgQhaIipAJnaxI7JaWNwQkC_h6XIMRcRpp5783yEDqhZEwpsee3D4-TxcOYESbGXBilhdhBI0YlLajkcheNqOW2oIKIfXTQdStCFNOWj5Cb4DmUYY0XoW7apl3iaYJN-IjpBV9AFzyOLV5E8PgO-up5C4DW41nbh2WCvsndyXoZU9M_b3Ad04C9-uwTVNvuEdqrYd2F4998iJ6mV4-XN8X8_np2OZkXFTO2L7gmllfc29oSGpiQhhplLK-VZOAVC8xoZWrtrVZaeqWVhBz5wlJYXyl-iGaDro-wcq-p2UD6chEa91OIaekg9U21Dk4EQnXJjNSlyeQAGmh-D-GCWgtlmbXOBq3XFN_eQ9e7VXxPbV7fccq0VlYSmVF8QFUpdl0K9d9UStzWFTe44rauuF9XMut0YDUhhH8MzZXVlH8DqNyG9Q</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ma, Guodong</creator><creator>Zhang, Meng</creator><creator>Yang, Jian</creator><creator>Shi, Zekai</creator><creator>Ren, Haoyuan</creator><creator>Zhang, Yaowei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8744-2922</orcidid></search><sort><creationdate>2024</creationdate><title>A Label Refining Framework Based on Road Matching and Integration Algorithm for Road Extraction</title><author>Ma, Guodong ; Zhang, Meng ; Yang, Jian ; Shi, Zekai ; Ren, Haoyuan ; Zhang, Yaowei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-37093c3d9f901e2458186893f652ad62e28768f7d97675d6765aaaa215b49dc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Biological system modeling</topic><topic>Crowdsourcing</topic><topic>Data mining</topic><topic>Data models</topic><topic>Digital mapping</topic><topic>Image acquisition</topic><topic>Image resolution</topic><topic>Labels</topic><topic>Labour costs</topic><topic>Machine learning</topic><topic>Matching</topic><topic>Navigation</topic><topic>OpenStreetMap</topic><topic>Refining</topic><topic>Remote sensing</topic><topic>road extraction</topic><topic>road matching</topic><topic>Roads</topic><topic>Roads &amp; highways</topic><topic>satellite imagery</topic><topic>Semantic segmentation</topic><topic>Training</topic><topic>Transportation networks</topic><topic>U-Net</topic><topic>Urban planning</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Guodong</creatorcontrib><creatorcontrib>Zhang, Meng</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Shi, Zekai</creatorcontrib><creatorcontrib>Ren, Haoyuan</creatorcontrib><creatorcontrib>Zhang, Yaowei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Guodong</au><au>Zhang, Meng</au><au>Yang, Jian</au><au>Shi, Zekai</au><au>Ren, Haoyuan</au><au>Zhang, Yaowei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Label Refining Framework Based on Road Matching and Integration Algorithm for Road Extraction</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2024</date><risdate>2024</risdate><volume>17</volume><spage>19548</spage><epage>19564</epage><pages>19548-19564</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Road network plays an important role in the fields of navigation, urban planning, and transportation. Extracting road network data from imagery based on machine learning models is an efficient and economical method for obtaining road network data. In order to save labor costs, crowdsourced data can be employed to automatically acquire the labels for model training. In response to the current challenges in road extraction, such as the limited number of labeled samples, low precision of sample labels generated from crowdsourced data, and difficulty in obtaining accurate road label data, which lead to low-quality, incomplete, and inaccurate road extraction, this study proposes a label refining framework based on a road matching and integrate algorithm. Labels are generated from OpenStreetMap (OSM) vector data, and roads are extracted from very high resolution orthoimage using the U-net model. The extracted roads are then matched and integrated with the original data to generate refined labels, which are employed for further model training and road extraction. Experimental results demonstrate that this process can overcome the poor quality of samples directly generated from the OSM data, i.e., the label refining framework led to significant improvements with respect to the completeness, accuracy, and quality of the road network extraction results.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2024.3486744</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8744-2922</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.19548-19564
issn 1939-1404
2151-1535
language eng
recordid cdi_ieee_primary_10736971
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Algorithms
Biological system modeling
Crowdsourcing
Data mining
Data models
Digital mapping
Image acquisition
Image resolution
Labels
Labour costs
Machine learning
Matching
Navigation
OpenStreetMap
Refining
Remote sensing
road extraction
road matching
Roads
Roads & highways
satellite imagery
Semantic segmentation
Training
Transportation networks
U-Net
Urban planning
Vectors
title A Label Refining Framework Based on Road Matching and Integration Algorithm for Road Extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Label%20Refining%20Framework%20Based%20on%20Road%20Matching%20and%20Integration%20Algorithm%20for%20Road%20Extraction&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Ma,%20Guodong&rft.date=2024&rft.volume=17&rft.spage=19548&rft.epage=19564&rft.pages=19548-19564&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2024.3486744&rft_dat=%3Cproquest_ieee_%3E3127769505%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127769505&rft_id=info:pmid/&rft_ieee_id=10736971&rft_doaj_id=oai_doaj_org_article_4e017b2857b849dea7a1193034199abb&rfr_iscdi=true