Flexible Switching Control of Aircraft Skin Inspection Robot via Adaptive Dynamic Programming

This article considers the flexible switching control problem of a two-frame aircraft skin inspection robot (TFASIR) with full-state time-varying constraints, input saturation, uncertainty, and unknown disturbance. Initially, this control problem is also treated as a tracking control problem of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.158407-158421
Hauptverfasser: Wu, Xuewei, Wang, Congqing, Wang, Wanjun, Zong, Siheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 158421
container_issue
container_start_page 158407
container_title IEEE access
container_volume 12
creator Wu, Xuewei
Wang, Congqing
Wang, Wanjun
Zong, Siheng
description This article considers the flexible switching control problem of a two-frame aircraft skin inspection robot (TFASIR) with full-state time-varying constraints, input saturation, uncertainty, and unknown disturbance. Initially, this control problem is also treated as a tracking control problem of the dual-coupled adsorption system (DCAS). A novel nonlinear time-varying state-dependent function (NTVSDF) is first designed to tackle the full-state constraint problem. Subsequently, a feedforward tracking control method is designed, that uses the command-filtered backstepping technique, to transform the tracking control problem into an equivalent differential game problem (DGP) of closed-loop systems. Then, a zero-sum game strategy is presented, that uses the idea of adaptive dynamic programming (ADP) algorithm, to determine the DGP. The whole control method ensures that the closed-loop signals are uniformly ultimately bounded (UUB). Furthermore, another problem is that the partial system states are not accessible. To overcome this problem, a high-gain observer is utilized to reconstruct the state vector, and an output feedback controller is developed. The feasibility of the proposed control scheme is demonstrated in simulation.
doi_str_mv 10.1109/ACCESS.2024.3486808
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10736578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10736578</ieee_id><doaj_id>oai_doaj_org_article_d5ffc8b10d354d18abc0cc190fbaf4cd</doaj_id><sourcerecordid>3123123222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-df7e0bfc6d9a3ebc87885a175d66b66feb5aeb942f3e65f6b1809df093de86f93</originalsourceid><addsrcrecordid>eNpNUdtqGzEQXUILMam_oHkQ9NmOLiut9Gi2uRgCLXX7WIQuI1fueuVq5Vz-PutsKBkGZjicc2bgVNVngpeEYHW1atvrzWZJMa2XrJZCYnlWzSgRasE4Ex_e7efVfBh2eCw5QryZVb9vOniKtgO0eYzF_Yn9FrWpLzl1KAW0itllEwra_I09WvfDAVyJqUc_kk0FPUSDVt4cSnwA9PW5N_vo0Pecttns96PVp-pjMN0A87d5Uf26uf7Z3i3uv92u29X9wlGpysKHBrANTnhlGFgnGym5IQ33QlghAlhuwKqaBgaCB2GJxMoHrJgHKYJiF9V68vXJ7PQhx73JzzqZqF-BlLfa5BJdB9rzEJy0BHvGa0-ksQ47RxQO1oTa-dHry-R1yOnfEYaid-mY-_F9zQg9NaV0ZLGJ5XIahgzh_1WC9SkWPcWiT7Hot1hG1eWkigDwTtEwwRvJXgB42or0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123123222</pqid></control><display><type>article</type><title>Flexible Switching Control of Aircraft Skin Inspection Robot via Adaptive Dynamic Programming</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wu, Xuewei ; Wang, Congqing ; Wang, Wanjun ; Zong, Siheng</creator><creatorcontrib>Wu, Xuewei ; Wang, Congqing ; Wang, Wanjun ; Zong, Siheng</creatorcontrib><description>This article considers the flexible switching control problem of a two-frame aircraft skin inspection robot (TFASIR) with full-state time-varying constraints, input saturation, uncertainty, and unknown disturbance. Initially, this control problem is also treated as a tracking control problem of the dual-coupled adsorption system (DCAS). A novel nonlinear time-varying state-dependent function (NTVSDF) is first designed to tackle the full-state constraint problem. Subsequently, a feedforward tracking control method is designed, that uses the command-filtered backstepping technique, to transform the tracking control problem into an equivalent differential game problem (DGP) of closed-loop systems. Then, a zero-sum game strategy is presented, that uses the idea of adaptive dynamic programming (ADP) algorithm, to determine the DGP. The whole control method ensures that the closed-loop signals are uniformly ultimately bounded (UUB). Furthermore, another problem is that the partial system states are not accessible. To overcome this problem, a high-gain observer is utilized to reconstruct the state vector, and an output feedback controller is developed. The feasibility of the proposed control scheme is demonstrated in simulation.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3486808</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive algorithms ; Adaptive control ; adaptive dynamic programming ; Adsorption ; Aircraft ; Aircraft control ; Closed loops ; Constraints ; Control methods ; Control systems ; differential game ; Differential games ; Dynamic programming ; Feedback control ; Feedforward control ; Force ; full-state time-varying constraint ; High gain ; Inspection ; Multi-agent systems ; Output feedback ; Robot control ; Robotics ; Robots ; Skin ; State vectors ; Switches ; Tracking control ; Uncertainty ; Zero sum games</subject><ispartof>IEEE access, 2024, Vol.12, p.158407-158421</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-df7e0bfc6d9a3ebc87885a175d66b66feb5aeb942f3e65f6b1809df093de86f93</cites><orcidid>0000-0002-5477-1893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10736578$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Wu, Xuewei</creatorcontrib><creatorcontrib>Wang, Congqing</creatorcontrib><creatorcontrib>Wang, Wanjun</creatorcontrib><creatorcontrib>Zong, Siheng</creatorcontrib><title>Flexible Switching Control of Aircraft Skin Inspection Robot via Adaptive Dynamic Programming</title><title>IEEE access</title><addtitle>Access</addtitle><description>This article considers the flexible switching control problem of a two-frame aircraft skin inspection robot (TFASIR) with full-state time-varying constraints, input saturation, uncertainty, and unknown disturbance. Initially, this control problem is also treated as a tracking control problem of the dual-coupled adsorption system (DCAS). A novel nonlinear time-varying state-dependent function (NTVSDF) is first designed to tackle the full-state constraint problem. Subsequently, a feedforward tracking control method is designed, that uses the command-filtered backstepping technique, to transform the tracking control problem into an equivalent differential game problem (DGP) of closed-loop systems. Then, a zero-sum game strategy is presented, that uses the idea of adaptive dynamic programming (ADP) algorithm, to determine the DGP. The whole control method ensures that the closed-loop signals are uniformly ultimately bounded (UUB). Furthermore, another problem is that the partial system states are not accessible. To overcome this problem, a high-gain observer is utilized to reconstruct the state vector, and an output feedback controller is developed. The feasibility of the proposed control scheme is demonstrated in simulation.</description><subject>Adaptive algorithms</subject><subject>Adaptive control</subject><subject>adaptive dynamic programming</subject><subject>Adsorption</subject><subject>Aircraft</subject><subject>Aircraft control</subject><subject>Closed loops</subject><subject>Constraints</subject><subject>Control methods</subject><subject>Control systems</subject><subject>differential game</subject><subject>Differential games</subject><subject>Dynamic programming</subject><subject>Feedback control</subject><subject>Feedforward control</subject><subject>Force</subject><subject>full-state time-varying constraint</subject><subject>High gain</subject><subject>Inspection</subject><subject>Multi-agent systems</subject><subject>Output feedback</subject><subject>Robot control</subject><subject>Robotics</subject><subject>Robots</subject><subject>Skin</subject><subject>State vectors</subject><subject>Switches</subject><subject>Tracking control</subject><subject>Uncertainty</subject><subject>Zero sum games</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtqGzEQXUILMam_oHkQ9NmOLiut9Gi2uRgCLXX7WIQuI1fueuVq5Vz-PutsKBkGZjicc2bgVNVngpeEYHW1atvrzWZJMa2XrJZCYnlWzSgRasE4Ex_e7efVfBh2eCw5QryZVb9vOniKtgO0eYzF_Yn9FrWpLzl1KAW0itllEwra_I09WvfDAVyJqUc_kk0FPUSDVt4cSnwA9PW5N_vo0Pecttns96PVp-pjMN0A87d5Uf26uf7Z3i3uv92u29X9wlGpysKHBrANTnhlGFgnGym5IQ33QlghAlhuwKqaBgaCB2GJxMoHrJgHKYJiF9V68vXJ7PQhx73JzzqZqF-BlLfa5BJdB9rzEJy0BHvGa0-ksQ47RxQO1oTa-dHry-R1yOnfEYaid-mY-_F9zQg9NaV0ZLGJ5XIahgzh_1WC9SkWPcWiT7Hot1hG1eWkigDwTtEwwRvJXgB42or0</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Wu, Xuewei</creator><creator>Wang, Congqing</creator><creator>Wang, Wanjun</creator><creator>Zong, Siheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5477-1893</orcidid></search><sort><creationdate>2024</creationdate><title>Flexible Switching Control of Aircraft Skin Inspection Robot via Adaptive Dynamic Programming</title><author>Wu, Xuewei ; Wang, Congqing ; Wang, Wanjun ; Zong, Siheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-df7e0bfc6d9a3ebc87885a175d66b66feb5aeb942f3e65f6b1809df093de86f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive control</topic><topic>adaptive dynamic programming</topic><topic>Adsorption</topic><topic>Aircraft</topic><topic>Aircraft control</topic><topic>Closed loops</topic><topic>Constraints</topic><topic>Control methods</topic><topic>Control systems</topic><topic>differential game</topic><topic>Differential games</topic><topic>Dynamic programming</topic><topic>Feedback control</topic><topic>Feedforward control</topic><topic>Force</topic><topic>full-state time-varying constraint</topic><topic>High gain</topic><topic>Inspection</topic><topic>Multi-agent systems</topic><topic>Output feedback</topic><topic>Robot control</topic><topic>Robotics</topic><topic>Robots</topic><topic>Skin</topic><topic>State vectors</topic><topic>Switches</topic><topic>Tracking control</topic><topic>Uncertainty</topic><topic>Zero sum games</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xuewei</creatorcontrib><creatorcontrib>Wang, Congqing</creatorcontrib><creatorcontrib>Wang, Wanjun</creatorcontrib><creatorcontrib>Zong, Siheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xuewei</au><au>Wang, Congqing</au><au>Wang, Wanjun</au><au>Zong, Siheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible Switching Control of Aircraft Skin Inspection Robot via Adaptive Dynamic Programming</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>158407</spage><epage>158421</epage><pages>158407-158421</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This article considers the flexible switching control problem of a two-frame aircraft skin inspection robot (TFASIR) with full-state time-varying constraints, input saturation, uncertainty, and unknown disturbance. Initially, this control problem is also treated as a tracking control problem of the dual-coupled adsorption system (DCAS). A novel nonlinear time-varying state-dependent function (NTVSDF) is first designed to tackle the full-state constraint problem. Subsequently, a feedforward tracking control method is designed, that uses the command-filtered backstepping technique, to transform the tracking control problem into an equivalent differential game problem (DGP) of closed-loop systems. Then, a zero-sum game strategy is presented, that uses the idea of adaptive dynamic programming (ADP) algorithm, to determine the DGP. The whole control method ensures that the closed-loop signals are uniformly ultimately bounded (UUB). Furthermore, another problem is that the partial system states are not accessible. To overcome this problem, a high-gain observer is utilized to reconstruct the state vector, and an output feedback controller is developed. The feasibility of the proposed control scheme is demonstrated in simulation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3486808</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5477-1893</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.158407-158421
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10736578
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Adaptive algorithms
Adaptive control
adaptive dynamic programming
Adsorption
Aircraft
Aircraft control
Closed loops
Constraints
Control methods
Control systems
differential game
Differential games
Dynamic programming
Feedback control
Feedforward control
Force
full-state time-varying constraint
High gain
Inspection
Multi-agent systems
Output feedback
Robot control
Robotics
Robots
Skin
State vectors
Switches
Tracking control
Uncertainty
Zero sum games
title Flexible Switching Control of Aircraft Skin Inspection Robot via Adaptive Dynamic Programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20Switching%20Control%20of%20Aircraft%20Skin%20Inspection%20Robot%20via%20Adaptive%20Dynamic%20Programming&rft.jtitle=IEEE%20access&rft.au=Wu,%20Xuewei&rft.date=2024&rft.volume=12&rft.spage=158407&rft.epage=158421&rft.pages=158407-158421&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3486808&rft_dat=%3Cproquest_ieee_%3E3123123222%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123123222&rft_id=info:pmid/&rft_ieee_id=10736578&rft_doaj_id=oai_doaj_org_article_d5ffc8b10d354d18abc0cc190fbaf4cd&rfr_iscdi=true