Flexible Switching Control of Aircraft Skin Inspection Robot via Adaptive Dynamic Programming
This article considers the flexible switching control problem of a two-frame aircraft skin inspection robot (TFASIR) with full-state time-varying constraints, input saturation, uncertainty, and unknown disturbance. Initially, this control problem is also treated as a tracking control problem of the...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.158407-158421 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 158421 |
---|---|
container_issue | |
container_start_page | 158407 |
container_title | IEEE access |
container_volume | 12 |
creator | Wu, Xuewei Wang, Congqing Wang, Wanjun Zong, Siheng |
description | This article considers the flexible switching control problem of a two-frame aircraft skin inspection robot (TFASIR) with full-state time-varying constraints, input saturation, uncertainty, and unknown disturbance. Initially, this control problem is also treated as a tracking control problem of the dual-coupled adsorption system (DCAS). A novel nonlinear time-varying state-dependent function (NTVSDF) is first designed to tackle the full-state constraint problem. Subsequently, a feedforward tracking control method is designed, that uses the command-filtered backstepping technique, to transform the tracking control problem into an equivalent differential game problem (DGP) of closed-loop systems. Then, a zero-sum game strategy is presented, that uses the idea of adaptive dynamic programming (ADP) algorithm, to determine the DGP. The whole control method ensures that the closed-loop signals are uniformly ultimately bounded (UUB). Furthermore, another problem is that the partial system states are not accessible. To overcome this problem, a high-gain observer is utilized to reconstruct the state vector, and an output feedback controller is developed. The feasibility of the proposed control scheme is demonstrated in simulation. |
doi_str_mv | 10.1109/ACCESS.2024.3486808 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10736578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10736578</ieee_id><doaj_id>oai_doaj_org_article_d5ffc8b10d354d18abc0cc190fbaf4cd</doaj_id><sourcerecordid>3123123222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-df7e0bfc6d9a3ebc87885a175d66b66feb5aeb942f3e65f6b1809df093de86f93</originalsourceid><addsrcrecordid>eNpNUdtqGzEQXUILMam_oHkQ9NmOLiut9Gi2uRgCLXX7WIQuI1fueuVq5Vz-PutsKBkGZjicc2bgVNVngpeEYHW1atvrzWZJMa2XrJZCYnlWzSgRasE4Ex_e7efVfBh2eCw5QryZVb9vOniKtgO0eYzF_Yn9FrWpLzl1KAW0itllEwra_I09WvfDAVyJqUc_kk0FPUSDVt4cSnwA9PW5N_vo0Pecttns96PVp-pjMN0A87d5Uf26uf7Z3i3uv92u29X9wlGpysKHBrANTnhlGFgnGym5IQ33QlghAlhuwKqaBgaCB2GJxMoHrJgHKYJiF9V68vXJ7PQhx73JzzqZqF-BlLfa5BJdB9rzEJy0BHvGa0-ksQ47RxQO1oTa-dHry-R1yOnfEYaid-mY-_F9zQg9NaV0ZLGJ5XIahgzh_1WC9SkWPcWiT7Hot1hG1eWkigDwTtEwwRvJXgB42or0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123123222</pqid></control><display><type>article</type><title>Flexible Switching Control of Aircraft Skin Inspection Robot via Adaptive Dynamic Programming</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wu, Xuewei ; Wang, Congqing ; Wang, Wanjun ; Zong, Siheng</creator><creatorcontrib>Wu, Xuewei ; Wang, Congqing ; Wang, Wanjun ; Zong, Siheng</creatorcontrib><description>This article considers the flexible switching control problem of a two-frame aircraft skin inspection robot (TFASIR) with full-state time-varying constraints, input saturation, uncertainty, and unknown disturbance. Initially, this control problem is also treated as a tracking control problem of the dual-coupled adsorption system (DCAS). A novel nonlinear time-varying state-dependent function (NTVSDF) is first designed to tackle the full-state constraint problem. Subsequently, a feedforward tracking control method is designed, that uses the command-filtered backstepping technique, to transform the tracking control problem into an equivalent differential game problem (DGP) of closed-loop systems. Then, a zero-sum game strategy is presented, that uses the idea of adaptive dynamic programming (ADP) algorithm, to determine the DGP. The whole control method ensures that the closed-loop signals are uniformly ultimately bounded (UUB). Furthermore, another problem is that the partial system states are not accessible. To overcome this problem, a high-gain observer is utilized to reconstruct the state vector, and an output feedback controller is developed. The feasibility of the proposed control scheme is demonstrated in simulation.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3486808</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive algorithms ; Adaptive control ; adaptive dynamic programming ; Adsorption ; Aircraft ; Aircraft control ; Closed loops ; Constraints ; Control methods ; Control systems ; differential game ; Differential games ; Dynamic programming ; Feedback control ; Feedforward control ; Force ; full-state time-varying constraint ; High gain ; Inspection ; Multi-agent systems ; Output feedback ; Robot control ; Robotics ; Robots ; Skin ; State vectors ; Switches ; Tracking control ; Uncertainty ; Zero sum games</subject><ispartof>IEEE access, 2024, Vol.12, p.158407-158421</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-df7e0bfc6d9a3ebc87885a175d66b66feb5aeb942f3e65f6b1809df093de86f93</cites><orcidid>0000-0002-5477-1893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10736578$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Wu, Xuewei</creatorcontrib><creatorcontrib>Wang, Congqing</creatorcontrib><creatorcontrib>Wang, Wanjun</creatorcontrib><creatorcontrib>Zong, Siheng</creatorcontrib><title>Flexible Switching Control of Aircraft Skin Inspection Robot via Adaptive Dynamic Programming</title><title>IEEE access</title><addtitle>Access</addtitle><description>This article considers the flexible switching control problem of a two-frame aircraft skin inspection robot (TFASIR) with full-state time-varying constraints, input saturation, uncertainty, and unknown disturbance. Initially, this control problem is also treated as a tracking control problem of the dual-coupled adsorption system (DCAS). A novel nonlinear time-varying state-dependent function (NTVSDF) is first designed to tackle the full-state constraint problem. Subsequently, a feedforward tracking control method is designed, that uses the command-filtered backstepping technique, to transform the tracking control problem into an equivalent differential game problem (DGP) of closed-loop systems. Then, a zero-sum game strategy is presented, that uses the idea of adaptive dynamic programming (ADP) algorithm, to determine the DGP. The whole control method ensures that the closed-loop signals are uniformly ultimately bounded (UUB). Furthermore, another problem is that the partial system states are not accessible. To overcome this problem, a high-gain observer is utilized to reconstruct the state vector, and an output feedback controller is developed. The feasibility of the proposed control scheme is demonstrated in simulation.</description><subject>Adaptive algorithms</subject><subject>Adaptive control</subject><subject>adaptive dynamic programming</subject><subject>Adsorption</subject><subject>Aircraft</subject><subject>Aircraft control</subject><subject>Closed loops</subject><subject>Constraints</subject><subject>Control methods</subject><subject>Control systems</subject><subject>differential game</subject><subject>Differential games</subject><subject>Dynamic programming</subject><subject>Feedback control</subject><subject>Feedforward control</subject><subject>Force</subject><subject>full-state time-varying constraint</subject><subject>High gain</subject><subject>Inspection</subject><subject>Multi-agent systems</subject><subject>Output feedback</subject><subject>Robot control</subject><subject>Robotics</subject><subject>Robots</subject><subject>Skin</subject><subject>State vectors</subject><subject>Switches</subject><subject>Tracking control</subject><subject>Uncertainty</subject><subject>Zero sum games</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtqGzEQXUILMam_oHkQ9NmOLiut9Gi2uRgCLXX7WIQuI1fueuVq5Vz-PutsKBkGZjicc2bgVNVngpeEYHW1atvrzWZJMa2XrJZCYnlWzSgRasE4Ex_e7efVfBh2eCw5QryZVb9vOniKtgO0eYzF_Yn9FrWpLzl1KAW0itllEwra_I09WvfDAVyJqUc_kk0FPUSDVt4cSnwA9PW5N_vo0Pecttns96PVp-pjMN0A87d5Uf26uf7Z3i3uv92u29X9wlGpysKHBrANTnhlGFgnGym5IQ33QlghAlhuwKqaBgaCB2GJxMoHrJgHKYJiF9V68vXJ7PQhx73JzzqZqF-BlLfa5BJdB9rzEJy0BHvGa0-ksQ47RxQO1oTa-dHry-R1yOnfEYaid-mY-_F9zQg9NaV0ZLGJ5XIahgzh_1WC9SkWPcWiT7Hot1hG1eWkigDwTtEwwRvJXgB42or0</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Wu, Xuewei</creator><creator>Wang, Congqing</creator><creator>Wang, Wanjun</creator><creator>Zong, Siheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5477-1893</orcidid></search><sort><creationdate>2024</creationdate><title>Flexible Switching Control of Aircraft Skin Inspection Robot via Adaptive Dynamic Programming</title><author>Wu, Xuewei ; Wang, Congqing ; Wang, Wanjun ; Zong, Siheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-df7e0bfc6d9a3ebc87885a175d66b66feb5aeb942f3e65f6b1809df093de86f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive control</topic><topic>adaptive dynamic programming</topic><topic>Adsorption</topic><topic>Aircraft</topic><topic>Aircraft control</topic><topic>Closed loops</topic><topic>Constraints</topic><topic>Control methods</topic><topic>Control systems</topic><topic>differential game</topic><topic>Differential games</topic><topic>Dynamic programming</topic><topic>Feedback control</topic><topic>Feedforward control</topic><topic>Force</topic><topic>full-state time-varying constraint</topic><topic>High gain</topic><topic>Inspection</topic><topic>Multi-agent systems</topic><topic>Output feedback</topic><topic>Robot control</topic><topic>Robotics</topic><topic>Robots</topic><topic>Skin</topic><topic>State vectors</topic><topic>Switches</topic><topic>Tracking control</topic><topic>Uncertainty</topic><topic>Zero sum games</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xuewei</creatorcontrib><creatorcontrib>Wang, Congqing</creatorcontrib><creatorcontrib>Wang, Wanjun</creatorcontrib><creatorcontrib>Zong, Siheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xuewei</au><au>Wang, Congqing</au><au>Wang, Wanjun</au><au>Zong, Siheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible Switching Control of Aircraft Skin Inspection Robot via Adaptive Dynamic Programming</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>158407</spage><epage>158421</epage><pages>158407-158421</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This article considers the flexible switching control problem of a two-frame aircraft skin inspection robot (TFASIR) with full-state time-varying constraints, input saturation, uncertainty, and unknown disturbance. Initially, this control problem is also treated as a tracking control problem of the dual-coupled adsorption system (DCAS). A novel nonlinear time-varying state-dependent function (NTVSDF) is first designed to tackle the full-state constraint problem. Subsequently, a feedforward tracking control method is designed, that uses the command-filtered backstepping technique, to transform the tracking control problem into an equivalent differential game problem (DGP) of closed-loop systems. Then, a zero-sum game strategy is presented, that uses the idea of adaptive dynamic programming (ADP) algorithm, to determine the DGP. The whole control method ensures that the closed-loop signals are uniformly ultimately bounded (UUB). Furthermore, another problem is that the partial system states are not accessible. To overcome this problem, a high-gain observer is utilized to reconstruct the state vector, and an output feedback controller is developed. The feasibility of the proposed control scheme is demonstrated in simulation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3486808</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5477-1893</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.158407-158421 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10736578 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Adaptive algorithms Adaptive control adaptive dynamic programming Adsorption Aircraft Aircraft control Closed loops Constraints Control methods Control systems differential game Differential games Dynamic programming Feedback control Feedforward control Force full-state time-varying constraint High gain Inspection Multi-agent systems Output feedback Robot control Robotics Robots Skin State vectors Switches Tracking control Uncertainty Zero sum games |
title | Flexible Switching Control of Aircraft Skin Inspection Robot via Adaptive Dynamic Programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20Switching%20Control%20of%20Aircraft%20Skin%20Inspection%20Robot%20via%20Adaptive%20Dynamic%20Programming&rft.jtitle=IEEE%20access&rft.au=Wu,%20Xuewei&rft.date=2024&rft.volume=12&rft.spage=158407&rft.epage=158421&rft.pages=158407-158421&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3486808&rft_dat=%3Cproquest_ieee_%3E3123123222%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3123123222&rft_id=info:pmid/&rft_ieee_id=10736578&rft_doaj_id=oai_doaj_org_article_d5ffc8b10d354d18abc0cc190fbaf4cd&rfr_iscdi=true |