Improved Transfer Learning for Detecting Upper-Limb Movement Intention Using Mechanical Sensors in an Exoskeletal Rehabilitation System
The objective of this study was to propose a novel strategy for detecting upper-limb motion intentions from mechanical sensor signals using deep and heterogeneous transfer learning techniques. Three sensor types, surface electromyography (sEMG), force-sensitive resistors (FSRs), and inertial measure...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on neural systems and rehabilitation engineering 2024, Vol.32, p.3953-3965 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3965 |
---|---|
container_issue | |
container_start_page | 3953 |
container_title | IEEE transactions on neural systems and rehabilitation engineering |
container_volume | 32 |
creator | Choi, Ahnryul Hyong Kim, Tae Chae, Seungheon Hwan Mun, Joung |
description | The objective of this study was to propose a novel strategy for detecting upper-limb motion intentions from mechanical sensor signals using deep and heterogeneous transfer learning techniques. Three sensor types, surface electromyography (sEMG), force-sensitive resistors (FSRs), and inertial measurement units (IMUs), were combined to capture biometric signals during arm-up, hold, and arm-down movements. To distinguish motion intentions, deep learning models were constructed using the CIFAR-ResNet18 and CIFAR-MobileNetV2 architectures. The input features of the source models were sEMG, FSR, and IMU signals. The target model was trained using only FSR and IMU sensor signals. Optimization techniques determined appropriate layer structures and learning rates of each layer for effective transfer learning. The source model on CIFAR-ResNet18 exhibited the highest performance, achieving an accuracy of 95% and an F-1 score of 0.95. The target model with optimization strategies performed comparably to the source model, achieving an accuracy of 93% and an F-1 score of 0.93. The results show that mechanical sensors alone can achieve performance comparable to models including sEMG. The proposed approach can serve as a convenient and precise algorithm for human-robot collaboration in rehabilitation assistant robots. |
doi_str_mv | 10.1109/TNSRE.2024.3486444 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10735240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10735240</ieee_id><doaj_id>oai_doaj_org_article_99952d8eb4f44b608351b627787359f4</doaj_id><sourcerecordid>3120910784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-62ffbcadf1edc09518c09d91002acff546a7e4aea4b0b0945f7a18035c1e98813</originalsourceid><addsrcrecordid>eNpNkc1uEzEUhUcIREvhBRBCXrKZ4N8Ze4naAJFSkJpkbXk8163LjCfYLqJPwGvjSULFxtc_53y-9qmqtwQvCMHq4_bb5ma5oJjyBeOy4Zw_q86JELLGlODn85zxmjOKz6pXKd1jTNpGtC-rM6a4YK1qzqs_q3Efp1_Qo200ITmIaA0mBh9ukZsiuoIMNs-r3X4PsV77sUPXxTBCyGgVcil-CmiXZs012DsTvDUD2kBIU0zIB2QCWv6e0g8YIJeTG7gznR98Ngfn5jFlGF9XL5wZErw51Ytq93m5vfxar79_WV1-WteWEZHrhjrXWdM7Ar3FShBZxl4RjKmxzgnemBa4AcM73OHyStcaIjETloCSkrCLanXk9pO51_voRxMf9WS8PmxM8VabmL0dQCulBO0ldNxx3jVYMkG6hratbJlQjhfWhyOr_ODPB0hZjz5ZGAYTYHpImhGKS2utnKX0KLVxSimCe7qaYD2HqQ9h6jlMfQqzmN6f-A_dCP2T5V96RfDuKPAA8B-x9Ec5Zn8BdOGlGQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120910784</pqid></control><display><type>article</type><title>Improved Transfer Learning for Detecting Upper-Limb Movement Intention Using Mechanical Sensors in an Exoskeletal Rehabilitation System</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Choi, Ahnryul ; Hyong Kim, Tae ; Chae, Seungheon ; Hwan Mun, Joung</creator><creatorcontrib>Choi, Ahnryul ; Hyong Kim, Tae ; Chae, Seungheon ; Hwan Mun, Joung</creatorcontrib><description>The objective of this study was to propose a novel strategy for detecting upper-limb motion intentions from mechanical sensor signals using deep and heterogeneous transfer learning techniques. Three sensor types, surface electromyography (sEMG), force-sensitive resistors (FSRs), and inertial measurement units (IMUs), were combined to capture biometric signals during arm-up, hold, and arm-down movements. To distinguish motion intentions, deep learning models were constructed using the CIFAR-ResNet18 and CIFAR-MobileNetV2 architectures. The input features of the source models were sEMG, FSR, and IMU signals. The target model was trained using only FSR and IMU sensor signals. Optimization techniques determined appropriate layer structures and learning rates of each layer for effective transfer learning. The source model on CIFAR-ResNet18 exhibited the highest performance, achieving an accuracy of 95% and an F-1 score of 0.95. The target model with optimization strategies performed comparably to the source model, achieving an accuracy of 93% and an F-1 score of 0.93. The results show that mechanical sensors alone can achieve performance comparable to models including sEMG. The proposed approach can serve as a convenient and precise algorithm for human-robot collaboration in rehabilitation assistant robots.</description><identifier>ISSN: 1534-4320</identifier><identifier>ISSN: 1558-0210</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2024.3486444</identifier><identifier>PMID: 39453796</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Adult ; Algorithms ; Biomechanical Phenomena ; Brain modeling ; CIFAR-MobileNetV2 ; CIFAR-ResNet18 ; Classification algorithms ; Data models ; Deep Learning ; Electromyography ; Electromyography - methods ; exoskeletal rehabilitation system ; Exoskeleton Device ; Exoskeletons ; Female ; Humans ; Intention ; Machine Learning ; Male ; mechanical sensor ; Mechanical sensors ; Movement - physiology ; Neural Networks, Computer ; Predictive models ; Robot sensing systems ; Transfer learning ; Transfer, Psychology ; Upper Extremity - physiology ; Upper-limb motion intention ; Young Adult</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2024, Vol.32, p.3953-3965</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c315t-62ffbcadf1edc09518c09d91002acff546a7e4aea4b0b0945f7a18035c1e98813</cites><orcidid>0000-0003-4213-785X ; 0000-0001-7355-3886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2095,4009,27902,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39453796$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Ahnryul</creatorcontrib><creatorcontrib>Hyong Kim, Tae</creatorcontrib><creatorcontrib>Chae, Seungheon</creatorcontrib><creatorcontrib>Hwan Mun, Joung</creatorcontrib><title>Improved Transfer Learning for Detecting Upper-Limb Movement Intention Using Mechanical Sensors in an Exoskeletal Rehabilitation System</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>The objective of this study was to propose a novel strategy for detecting upper-limb motion intentions from mechanical sensor signals using deep and heterogeneous transfer learning techniques. Three sensor types, surface electromyography (sEMG), force-sensitive resistors (FSRs), and inertial measurement units (IMUs), were combined to capture biometric signals during arm-up, hold, and arm-down movements. To distinguish motion intentions, deep learning models were constructed using the CIFAR-ResNet18 and CIFAR-MobileNetV2 architectures. The input features of the source models were sEMG, FSR, and IMU signals. The target model was trained using only FSR and IMU sensor signals. Optimization techniques determined appropriate layer structures and learning rates of each layer for effective transfer learning. The source model on CIFAR-ResNet18 exhibited the highest performance, achieving an accuracy of 95% and an F-1 score of 0.95. The target model with optimization strategies performed comparably to the source model, achieving an accuracy of 93% and an F-1 score of 0.93. The results show that mechanical sensors alone can achieve performance comparable to models including sEMG. The proposed approach can serve as a convenient and precise algorithm for human-robot collaboration in rehabilitation assistant robots.</description><subject>Accuracy</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Biomechanical Phenomena</subject><subject>Brain modeling</subject><subject>CIFAR-MobileNetV2</subject><subject>CIFAR-ResNet18</subject><subject>Classification algorithms</subject><subject>Data models</subject><subject>Deep Learning</subject><subject>Electromyography</subject><subject>Electromyography - methods</subject><subject>exoskeletal rehabilitation system</subject><subject>Exoskeleton Device</subject><subject>Exoskeletons</subject><subject>Female</subject><subject>Humans</subject><subject>Intention</subject><subject>Machine Learning</subject><subject>Male</subject><subject>mechanical sensor</subject><subject>Mechanical sensors</subject><subject>Movement - physiology</subject><subject>Neural Networks, Computer</subject><subject>Predictive models</subject><subject>Robot sensing systems</subject><subject>Transfer learning</subject><subject>Transfer, Psychology</subject><subject>Upper Extremity - physiology</subject><subject>Upper-limb motion intention</subject><subject>Young Adult</subject><issn>1534-4320</issn><issn>1558-0210</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1uEzEUhUcIREvhBRBCXrKZ4N8Ze4naAJFSkJpkbXk8163LjCfYLqJPwGvjSULFxtc_53y-9qmqtwQvCMHq4_bb5ma5oJjyBeOy4Zw_q86JELLGlODn85zxmjOKz6pXKd1jTNpGtC-rM6a4YK1qzqs_q3Efp1_Qo200ITmIaA0mBh9ukZsiuoIMNs-r3X4PsV77sUPXxTBCyGgVcil-CmiXZs012DsTvDUD2kBIU0zIB2QCWv6e0g8YIJeTG7gznR98Ngfn5jFlGF9XL5wZErw51Ytq93m5vfxar79_WV1-WteWEZHrhjrXWdM7Ar3FShBZxl4RjKmxzgnemBa4AcM73OHyStcaIjETloCSkrCLanXk9pO51_voRxMf9WS8PmxM8VabmL0dQCulBO0ldNxx3jVYMkG6hratbJlQjhfWhyOr_ODPB0hZjz5ZGAYTYHpImhGKS2utnKX0KLVxSimCe7qaYD2HqQ9h6jlMfQqzmN6f-A_dCP2T5V96RfDuKPAA8B-x9Ec5Zn8BdOGlGQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Choi, Ahnryul</creator><creator>Hyong Kim, Tae</creator><creator>Chae, Seungheon</creator><creator>Hwan Mun, Joung</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4213-785X</orcidid><orcidid>https://orcid.org/0000-0001-7355-3886</orcidid></search><sort><creationdate>2024</creationdate><title>Improved Transfer Learning for Detecting Upper-Limb Movement Intention Using Mechanical Sensors in an Exoskeletal Rehabilitation System</title><author>Choi, Ahnryul ; Hyong Kim, Tae ; Chae, Seungheon ; Hwan Mun, Joung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-62ffbcadf1edc09518c09d91002acff546a7e4aea4b0b0945f7a18035c1e98813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Biomechanical Phenomena</topic><topic>Brain modeling</topic><topic>CIFAR-MobileNetV2</topic><topic>CIFAR-ResNet18</topic><topic>Classification algorithms</topic><topic>Data models</topic><topic>Deep Learning</topic><topic>Electromyography</topic><topic>Electromyography - methods</topic><topic>exoskeletal rehabilitation system</topic><topic>Exoskeleton Device</topic><topic>Exoskeletons</topic><topic>Female</topic><topic>Humans</topic><topic>Intention</topic><topic>Machine Learning</topic><topic>Male</topic><topic>mechanical sensor</topic><topic>Mechanical sensors</topic><topic>Movement - physiology</topic><topic>Neural Networks, Computer</topic><topic>Predictive models</topic><topic>Robot sensing systems</topic><topic>Transfer learning</topic><topic>Transfer, Psychology</topic><topic>Upper Extremity - physiology</topic><topic>Upper-limb motion intention</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Ahnryul</creatorcontrib><creatorcontrib>Hyong Kim, Tae</creatorcontrib><creatorcontrib>Chae, Seungheon</creatorcontrib><creatorcontrib>Hwan Mun, Joung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Ahnryul</au><au>Hyong Kim, Tae</au><au>Chae, Seungheon</au><au>Hwan Mun, Joung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Transfer Learning for Detecting Upper-Limb Movement Intention Using Mechanical Sensors in an Exoskeletal Rehabilitation System</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2024</date><risdate>2024</risdate><volume>32</volume><spage>3953</spage><epage>3965</epage><pages>3953-3965</pages><issn>1534-4320</issn><issn>1558-0210</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>The objective of this study was to propose a novel strategy for detecting upper-limb motion intentions from mechanical sensor signals using deep and heterogeneous transfer learning techniques. Three sensor types, surface electromyography (sEMG), force-sensitive resistors (FSRs), and inertial measurement units (IMUs), were combined to capture biometric signals during arm-up, hold, and arm-down movements. To distinguish motion intentions, deep learning models were constructed using the CIFAR-ResNet18 and CIFAR-MobileNetV2 architectures. The input features of the source models were sEMG, FSR, and IMU signals. The target model was trained using only FSR and IMU sensor signals. Optimization techniques determined appropriate layer structures and learning rates of each layer for effective transfer learning. The source model on CIFAR-ResNet18 exhibited the highest performance, achieving an accuracy of 95% and an F-1 score of 0.95. The target model with optimization strategies performed comparably to the source model, achieving an accuracy of 93% and an F-1 score of 0.93. The results show that mechanical sensors alone can achieve performance comparable to models including sEMG. The proposed approach can serve as a convenient and precise algorithm for human-robot collaboration in rehabilitation assistant robots.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39453796</pmid><doi>10.1109/TNSRE.2024.3486444</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4213-785X</orcidid><orcidid>https://orcid.org/0000-0001-7355-3886</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-4320 |
ispartof | IEEE transactions on neural systems and rehabilitation engineering, 2024, Vol.32, p.3953-3965 |
issn | 1534-4320 1558-0210 1558-0210 |
language | eng |
recordid | cdi_ieee_primary_10735240 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Adult Algorithms Biomechanical Phenomena Brain modeling CIFAR-MobileNetV2 CIFAR-ResNet18 Classification algorithms Data models Deep Learning Electromyography Electromyography - methods exoskeletal rehabilitation system Exoskeleton Device Exoskeletons Female Humans Intention Machine Learning Male mechanical sensor Mechanical sensors Movement - physiology Neural Networks, Computer Predictive models Robot sensing systems Transfer learning Transfer, Psychology Upper Extremity - physiology Upper-limb motion intention Young Adult |
title | Improved Transfer Learning for Detecting Upper-Limb Movement Intention Using Mechanical Sensors in an Exoskeletal Rehabilitation System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A00%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Transfer%20Learning%20for%20Detecting%20Upper-Limb%20Movement%20Intention%20Using%20Mechanical%20Sensors%20in%20an%20Exoskeletal%20Rehabilitation%20System&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Choi,%20Ahnryul&rft.date=2024&rft.volume=32&rft.spage=3953&rft.epage=3965&rft.pages=3953-3965&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2024.3486444&rft_dat=%3Cproquest_ieee_%3E3120910784%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120910784&rft_id=info:pmid/39453796&rft_ieee_id=10735240&rft_doaj_id=oai_doaj_org_article_99952d8eb4f44b608351b627787359f4&rfr_iscdi=true |