Optimal Sensing Policy With Interference-Model Uncertainty

This letter considers a half-duplex scenario where an interferer behaves according to a parametric model but the values of the model parameters are unknown. We explore the necessary number of sensing steps to gather sufficient knowledge about the interferer's behavior. With more sensing steps,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2024-12, Vol.28 (12), p.2914-2919
Hauptverfasser: Corlay, Vincent, Sibel, Jean-Christophe, Gresset, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2919
container_issue 12
container_start_page 2914
container_title IEEE communications letters
container_volume 28
creator Corlay, Vincent
Sibel, Jean-Christophe
Gresset, Nicolas
description This letter considers a half-duplex scenario where an interferer behaves according to a parametric model but the values of the model parameters are unknown. We explore the necessary number of sensing steps to gather sufficient knowledge about the interferer's behavior. With more sensing steps, the reliability of the model-parameter estimates is improved, thereby enabling more effective link adaptation. However, in each time slot, the communication system experiencing interference must choose between sensing and communication. Thus, we propose to investigate the optimal policy for maximizing the expected sum communication data rate over a finite-time communication. This approach contrasts with most studies on interference management in the literature, which assume that the parameters of the interference model are perfectly known. We begin by showing that the problem under consideration can be modeled within the framework of a Markov decision process (MDP). Following this, we demonstrate that both the optimal open-loop and optimal closed-loop policies can be determined with reduced computational complexity compared to the standard backward-induction algorithm.
doi_str_mv 10.1109/LCOMM.2024.3485008
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10731907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10731907</ieee_id><sourcerecordid>10_1109_LCOMM_2024_3485008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1445-86208eb6d9e94f12cb7f48f60fdf8513aee26c2b545675b58d80327dadaec2023</originalsourceid><addsrcrecordid>eNpNj8FOhDAQhhujievqCxgPvECxLS0Ub4bougkEE914bEo7VQzCpuXC29t19-Dln_8w32Q-hG4pSSkl5X1dtU2TMsJ4mnEpCJFnaEWFkJjFOI-dyBIXRSkv0VUI3yRuMEFX6KHdz_2PHpI3GEM_fiav09CbJfno569kO87gHXgYDeBmsjAku1j9rPtxXq7RhdNDgJvTXKPd89N79YLrdrOtHmtsKOcCy5wRCV1uSyi5o8x0hePS5cRZJwXNNADLDesEF3khOiGtJBkrrLYaTDTK1ogd7xo_heDBqb2PL_tFUaIO9urPXh3s1ck-QndHqAeAf0CR0TLGLwbyVnU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal Sensing Policy With Interference-Model Uncertainty</title><source>IEEE Electronic Library (IEL)</source><creator>Corlay, Vincent ; Sibel, Jean-Christophe ; Gresset, Nicolas</creator><creatorcontrib>Corlay, Vincent ; Sibel, Jean-Christophe ; Gresset, Nicolas</creatorcontrib><description>This letter considers a half-duplex scenario where an interferer behaves according to a parametric model but the values of the model parameters are unknown. We explore the necessary number of sensing steps to gather sufficient knowledge about the interferer's behavior. With more sensing steps, the reliability of the model-parameter estimates is improved, thereby enabling more effective link adaptation. However, in each time slot, the communication system experiencing interference must choose between sensing and communication. Thus, we propose to investigate the optimal policy for maximizing the expected sum communication data rate over a finite-time communication. This approach contrasts with most studies on interference management in the literature, which assume that the parameters of the interference model are perfectly known. We begin by showing that the problem under consideration can be modeled within the framework of a Markov decision process (MDP). Following this, we demonstrate that both the optimal open-loop and optimal closed-loop policies can be determined with reduced computational complexity compared to the standard backward-induction algorithm.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2024.3485008</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Cognitive radio ; Complexity theory ; Data models ; Interference ; link adaptation ; Mathematical models ; MDP ; Model uncertainty ; Random variables ; sensing ; Sensors ; Signal to noise ratio ; superposition coding</subject><ispartof>IEEE communications letters, 2024-12, Vol.28 (12), p.2914-2919</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1445-86208eb6d9e94f12cb7f48f60fdf8513aee26c2b545675b58d80327dadaec2023</cites><orcidid>0000-0002-9406-8377 ; 0000-0002-3226-2537</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10731907$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10731907$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Corlay, Vincent</creatorcontrib><creatorcontrib>Sibel, Jean-Christophe</creatorcontrib><creatorcontrib>Gresset, Nicolas</creatorcontrib><title>Optimal Sensing Policy With Interference-Model Uncertainty</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description>This letter considers a half-duplex scenario where an interferer behaves according to a parametric model but the values of the model parameters are unknown. We explore the necessary number of sensing steps to gather sufficient knowledge about the interferer's behavior. With more sensing steps, the reliability of the model-parameter estimates is improved, thereby enabling more effective link adaptation. However, in each time slot, the communication system experiencing interference must choose between sensing and communication. Thus, we propose to investigate the optimal policy for maximizing the expected sum communication data rate over a finite-time communication. This approach contrasts with most studies on interference management in the literature, which assume that the parameters of the interference model are perfectly known. We begin by showing that the problem under consideration can be modeled within the framework of a Markov decision process (MDP). Following this, we demonstrate that both the optimal open-loop and optimal closed-loop policies can be determined with reduced computational complexity compared to the standard backward-induction algorithm.</description><subject>Adaptation models</subject><subject>Cognitive radio</subject><subject>Complexity theory</subject><subject>Data models</subject><subject>Interference</subject><subject>link adaptation</subject><subject>Mathematical models</subject><subject>MDP</subject><subject>Model uncertainty</subject><subject>Random variables</subject><subject>sensing</subject><subject>Sensors</subject><subject>Signal to noise ratio</subject><subject>superposition coding</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNj8FOhDAQhhujievqCxgPvECxLS0Ub4bougkEE914bEo7VQzCpuXC29t19-Dln_8w32Q-hG4pSSkl5X1dtU2TMsJ4mnEpCJFnaEWFkJjFOI-dyBIXRSkv0VUI3yRuMEFX6KHdz_2PHpI3GEM_fiav09CbJfno569kO87gHXgYDeBmsjAku1j9rPtxXq7RhdNDgJvTXKPd89N79YLrdrOtHmtsKOcCy5wRCV1uSyi5o8x0hePS5cRZJwXNNADLDesEF3khOiGtJBkrrLYaTDTK1ogd7xo_heDBqb2PL_tFUaIO9urPXh3s1ck-QndHqAeAf0CR0TLGLwbyVnU</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Corlay, Vincent</creator><creator>Sibel, Jean-Christophe</creator><creator>Gresset, Nicolas</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9406-8377</orcidid><orcidid>https://orcid.org/0000-0002-3226-2537</orcidid></search><sort><creationdate>202412</creationdate><title>Optimal Sensing Policy With Interference-Model Uncertainty</title><author>Corlay, Vincent ; Sibel, Jean-Christophe ; Gresset, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1445-86208eb6d9e94f12cb7f48f60fdf8513aee26c2b545675b58d80327dadaec2023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Cognitive radio</topic><topic>Complexity theory</topic><topic>Data models</topic><topic>Interference</topic><topic>link adaptation</topic><topic>Mathematical models</topic><topic>MDP</topic><topic>Model uncertainty</topic><topic>Random variables</topic><topic>sensing</topic><topic>Sensors</topic><topic>Signal to noise ratio</topic><topic>superposition coding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Corlay, Vincent</creatorcontrib><creatorcontrib>Sibel, Jean-Christophe</creatorcontrib><creatorcontrib>Gresset, Nicolas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Corlay, Vincent</au><au>Sibel, Jean-Christophe</au><au>Gresset, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Sensing Policy With Interference-Model Uncertainty</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2024-12</date><risdate>2024</risdate><volume>28</volume><issue>12</issue><spage>2914</spage><epage>2919</epage><pages>2914-2919</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>This letter considers a half-duplex scenario where an interferer behaves according to a parametric model but the values of the model parameters are unknown. We explore the necessary number of sensing steps to gather sufficient knowledge about the interferer's behavior. With more sensing steps, the reliability of the model-parameter estimates is improved, thereby enabling more effective link adaptation. However, in each time slot, the communication system experiencing interference must choose between sensing and communication. Thus, we propose to investigate the optimal policy for maximizing the expected sum communication data rate over a finite-time communication. This approach contrasts with most studies on interference management in the literature, which assume that the parameters of the interference model are perfectly known. We begin by showing that the problem under consideration can be modeled within the framework of a Markov decision process (MDP). Following this, we demonstrate that both the optimal open-loop and optimal closed-loop policies can be determined with reduced computational complexity compared to the standard backward-induction algorithm.</abstract><pub>IEEE</pub><doi>10.1109/LCOMM.2024.3485008</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9406-8377</orcidid><orcidid>https://orcid.org/0000-0002-3226-2537</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2024-12, Vol.28 (12), p.2914-2919
issn 1089-7798
1558-2558
language eng
recordid cdi_ieee_primary_10731907
source IEEE Electronic Library (IEL)
subjects Adaptation models
Cognitive radio
Complexity theory
Data models
Interference
link adaptation
Mathematical models
MDP
Model uncertainty
Random variables
sensing
Sensors
Signal to noise ratio
superposition coding
title Optimal Sensing Policy With Interference-Model Uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A15%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Sensing%20Policy%20With%20Interference-Model%20Uncertainty&rft.jtitle=IEEE%20communications%20letters&rft.au=Corlay,%20Vincent&rft.date=2024-12&rft.volume=28&rft.issue=12&rft.spage=2914&rft.epage=2919&rft.pages=2914-2919&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2024.3485008&rft_dat=%3Ccrossref_RIE%3E10_1109_LCOMM_2024_3485008%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10731907&rfr_iscdi=true