Attention Guided Semisupervised Generative Transfer Learning for Hyperspectral Image Analysis
In geospatial image analysis, domain shifts caused by differences between datasets often undermine the performance of deep learning models due to their limited generalization ability. This issue is particularly pronounced in hyperspectral imagery, given the high dimensionality of the per-pixel refle...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2024, Vol.17, p.19884-19899 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19899 |
---|---|
container_issue | |
container_start_page | 19884 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 17 |
creator | Yaghmour, Anan Prasad, Saurabh Crawford, Melba M. |
description | In geospatial image analysis, domain shifts caused by differences between datasets often undermine the performance of deep learning models due to their limited generalization ability. This issue is particularly pronounced in hyperspectral imagery, given the high dimensionality of the per-pixel reflectance vectors and the complexity of the resulting deep learning models. We introduce a semisupervised domain adaptation technique that improves on the adversarial discriminative framework, incorporating a novel multiclass discriminator to address low discriminability and negative transfer issues from which current approaches suffer. Significantly, our method addresses mode collapse by incorporating limited labeled data from the target domain for targeted guidance during adaptation. In addition, we integrate an attention mechanism that focuses on challenging spatial regions for the target mode. We tested our approach on three unique hyperspectral remote sensing datasets to demonstrate its efficacy in diverse conditions (e.g., cloud shadows, atmospheric variability, and terrain). This strategy improves discrimination and reduces negative transfer in domain adaptation for geospatial image analysis. |
doi_str_mv | 10.1109/JSTARS.2024.3485528 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10731899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10731899</ieee_id><doaj_id>oai_doaj_org_article_03d06e299d5241e586c8dc2e29e5c47d</doaj_id><sourcerecordid>3127769084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-19145e39e18956da610c6be5452375470d38652ccdd6f3eb45c8bf62897d8c53</originalsourceid><addsrcrecordid>eNpNkU9LAzEQxYMoWKufQA8Lnrfm_ybHUrStFAS7VwlpMltS2t2abAv99m7dIp6GGd57w-OH0CPBI0KwfnlfluPP5YhiykeMKyGoukIDSgTJiWDiGg2IZjonHPNbdJfSBmNJC80G6GvctlC3oamz6SF48NkSdiEd9hCPIXXrFGqItg1HyMpo61RBzBZgYx3qdVY1MZudOm3ag2uj3WbznV1DNq7t9pRCukc3ld0meLjMISrfXsvJLF98TOeT8SJ3lPM2J5pwAUwDUVpIbyXBTq5AcEFZIXiBPVNSUOe8lxWDFRdOrSpJlS68coIN0byP9Y3dmH0MOxtPprHB_B6auDY2tsFtwWDmsQSqtReUExBKOuUd7S4gHC98l_XcZ-1j832A1JpNc4hdn2QYoUUhNVa8U7Fe5WKTUoTq7yvB5ozE9EjMGYm5IOlcT70rAMA_R8G64pr9ANO7iEM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127769084</pqid></control><display><type>article</type><title>Attention Guided Semisupervised Generative Transfer Learning for Hyperspectral Image Analysis</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yaghmour, Anan ; Prasad, Saurabh ; Crawford, Melba M.</creator><creatorcontrib>Yaghmour, Anan ; Prasad, Saurabh ; Crawford, Melba M.</creatorcontrib><description>In geospatial image analysis, domain shifts caused by differences between datasets often undermine the performance of deep learning models due to their limited generalization ability. This issue is particularly pronounced in hyperspectral imagery, given the high dimensionality of the per-pixel reflectance vectors and the complexity of the resulting deep learning models. We introduce a semisupervised domain adaptation technique that improves on the adversarial discriminative framework, incorporating a novel multiclass discriminator to address low discriminability and negative transfer issues from which current approaches suffer. Significantly, our method addresses mode collapse by incorporating limited labeled data from the target domain for targeted guidance during adaptation. In addition, we integrate an attention mechanism that focuses on challenging spatial regions for the target mode. We tested our approach on three unique hyperspectral remote sensing datasets to demonstrate its efficacy in diverse conditions (e.g., cloud shadows, atmospheric variability, and terrain). This strategy improves discrimination and reduces negative transfer in domain adaptation for geospatial image analysis.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2024.3485528</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation ; Adaptation models ; Analytical models ; Attention GANs ; Attention mechanisms ; Datasets ; Deep learning ; domain adaptation ; Expression vectors ; generative adversarial learning ; Geospatial analysis ; hyperspectral ; Hyperspectral imaging ; Image analysis ; Image processing ; Reflectance ; Remote sensing ; Semantic segmentation ; Semantics ; Training ; Transfer learning ; Vectors</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.19884-19899</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-19145e39e18956da610c6be5452375470d38652ccdd6f3eb45c8bf62897d8c53</cites><orcidid>0000-0003-3459-2094 ; 0000-0003-3729-9360 ; 0009-0007-0048-9757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2100,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Yaghmour, Anan</creatorcontrib><creatorcontrib>Prasad, Saurabh</creatorcontrib><creatorcontrib>Crawford, Melba M.</creatorcontrib><title>Attention Guided Semisupervised Generative Transfer Learning for Hyperspectral Image Analysis</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>In geospatial image analysis, domain shifts caused by differences between datasets often undermine the performance of deep learning models due to their limited generalization ability. This issue is particularly pronounced in hyperspectral imagery, given the high dimensionality of the per-pixel reflectance vectors and the complexity of the resulting deep learning models. We introduce a semisupervised domain adaptation technique that improves on the adversarial discriminative framework, incorporating a novel multiclass discriminator to address low discriminability and negative transfer issues from which current approaches suffer. Significantly, our method addresses mode collapse by incorporating limited labeled data from the target domain for targeted guidance during adaptation. In addition, we integrate an attention mechanism that focuses on challenging spatial regions for the target mode. We tested our approach on three unique hyperspectral remote sensing datasets to demonstrate its efficacy in diverse conditions (e.g., cloud shadows, atmospheric variability, and terrain). This strategy improves discrimination and reduces negative transfer in domain adaptation for geospatial image analysis.</description><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Analytical models</subject><subject>Attention GANs</subject><subject>Attention mechanisms</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>domain adaptation</subject><subject>Expression vectors</subject><subject>generative adversarial learning</subject><subject>Geospatial analysis</subject><subject>hyperspectral</subject><subject>Hyperspectral imaging</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Reflectance</subject><subject>Remote sensing</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Training</subject><subject>Transfer learning</subject><subject>Vectors</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9LAzEQxYMoWKufQA8Lnrfm_ybHUrStFAS7VwlpMltS2t2abAv99m7dIp6GGd57w-OH0CPBI0KwfnlfluPP5YhiykeMKyGoukIDSgTJiWDiGg2IZjonHPNbdJfSBmNJC80G6GvctlC3oamz6SF48NkSdiEd9hCPIXXrFGqItg1HyMpo61RBzBZgYx3qdVY1MZudOm3ag2uj3WbznV1DNq7t9pRCukc3ld0meLjMISrfXsvJLF98TOeT8SJ3lPM2J5pwAUwDUVpIbyXBTq5AcEFZIXiBPVNSUOe8lxWDFRdOrSpJlS68coIN0byP9Y3dmH0MOxtPprHB_B6auDY2tsFtwWDmsQSqtReUExBKOuUd7S4gHC98l_XcZ-1j832A1JpNc4hdn2QYoUUhNVa8U7Fe5WKTUoTq7yvB5ozE9EjMGYm5IOlcT70rAMA_R8G64pr9ANO7iEM</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yaghmour, Anan</creator><creator>Prasad, Saurabh</creator><creator>Crawford, Melba M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3459-2094</orcidid><orcidid>https://orcid.org/0000-0003-3729-9360</orcidid><orcidid>https://orcid.org/0009-0007-0048-9757</orcidid></search><sort><creationdate>2024</creationdate><title>Attention Guided Semisupervised Generative Transfer Learning for Hyperspectral Image Analysis</title><author>Yaghmour, Anan ; Prasad, Saurabh ; Crawford, Melba M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-19145e39e18956da610c6be5452375470d38652ccdd6f3eb45c8bf62897d8c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Analytical models</topic><topic>Attention GANs</topic><topic>Attention mechanisms</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>domain adaptation</topic><topic>Expression vectors</topic><topic>generative adversarial learning</topic><topic>Geospatial analysis</topic><topic>hyperspectral</topic><topic>Hyperspectral imaging</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Reflectance</topic><topic>Remote sensing</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Training</topic><topic>Transfer learning</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yaghmour, Anan</creatorcontrib><creatorcontrib>Prasad, Saurabh</creatorcontrib><creatorcontrib>Crawford, Melba M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yaghmour, Anan</au><au>Prasad, Saurabh</au><au>Crawford, Melba M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attention Guided Semisupervised Generative Transfer Learning for Hyperspectral Image Analysis</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2024</date><risdate>2024</risdate><volume>17</volume><spage>19884</spage><epage>19899</epage><pages>19884-19899</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>In geospatial image analysis, domain shifts caused by differences between datasets often undermine the performance of deep learning models due to their limited generalization ability. This issue is particularly pronounced in hyperspectral imagery, given the high dimensionality of the per-pixel reflectance vectors and the complexity of the resulting deep learning models. We introduce a semisupervised domain adaptation technique that improves on the adversarial discriminative framework, incorporating a novel multiclass discriminator to address low discriminability and negative transfer issues from which current approaches suffer. Significantly, our method addresses mode collapse by incorporating limited labeled data from the target domain for targeted guidance during adaptation. In addition, we integrate an attention mechanism that focuses on challenging spatial regions for the target mode. We tested our approach on three unique hyperspectral remote sensing datasets to demonstrate its efficacy in diverse conditions (e.g., cloud shadows, atmospheric variability, and terrain). This strategy improves discrimination and reduces negative transfer in domain adaptation for geospatial image analysis.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2024.3485528</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3459-2094</orcidid><orcidid>https://orcid.org/0000-0003-3729-9360</orcidid><orcidid>https://orcid.org/0009-0007-0048-9757</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.19884-19899 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_ieee_primary_10731899 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adaptation Adaptation models Analytical models Attention GANs Attention mechanisms Datasets Deep learning domain adaptation Expression vectors generative adversarial learning Geospatial analysis hyperspectral Hyperspectral imaging Image analysis Image processing Reflectance Remote sensing Semantic segmentation Semantics Training Transfer learning Vectors |
title | Attention Guided Semisupervised Generative Transfer Learning for Hyperspectral Image Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attention%20Guided%20Semisupervised%20Generative%20Transfer%20Learning%20for%20Hyperspectral%20Image%20Analysis&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Yaghmour,%20Anan&rft.date=2024&rft.volume=17&rft.spage=19884&rft.epage=19899&rft.pages=19884-19899&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2024.3485528&rft_dat=%3Cproquest_ieee_%3E3127769084%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127769084&rft_id=info:pmid/&rft_ieee_id=10731899&rft_doaj_id=oai_doaj_org_article_03d06e299d5241e586c8dc2e29e5c47d&rfr_iscdi=true |