OPODet: Toward Open World Potential Oriented Object Detection in Remote Sensing Images

Despite recent advances in object detection, closed-set detectors with fixed training classes often overlook or misclassify unannotated objects during testing. To address this, open world object detection (OWOD) algorithms identify and label these objects as unknown, better aligning with real-world...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-13
Hauptverfasser: Tan, Zhiwen, Jiang, Zhiguo, Yuan, Zheming, Zhang, Haopeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Tan, Zhiwen
Jiang, Zhiguo
Yuan, Zheming
Zhang, Haopeng
description Despite recent advances in object detection, closed-set detectors with fixed training classes often overlook or misclassify unannotated objects during testing. To address this, open world object detection (OWOD) algorithms identify and label these objects as unknown, better aligning with real-world scenarios and human learning. However, remote sensing images, with their arbitrary object orientations and large interclass feature disparities, pose significant challenges for these algorithms. To tackle this, we propose OPODet, an Open-world Potential Oriented object Detection framework for remote sensing images. Specifically, we incorporate the oriented unknown-aware region proposal network (OUA-RPN) into traditional oriented object detection models, enabling the network to predict potential oriented objects. To address the significant interclass feature differences among potential unknown classes, we propose a multiunknown-class clustering aligning prototype (MCAP) learning method to prevent feature collapse in the feature space. In addition, to address the lack of rotation information for potential objects, we introduce a rotation potential target consistency (RPTC) algorithm to impose explicit rotation constraints for generating more accurate potential unknown proposals. Extensive experiments on DIOR-R, DOTA-v1.0, and HRSC2016 datasets demonstrate the effectiveness of our approach in detecting potential oriented objects.
doi_str_mv 10.1109/TGRS.2024.3481951
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10720216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10720216</ieee_id><sourcerecordid>3122295313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-c263a21853b8e473da7685b88c0e9774b4708b3752988e1335e45af915648bc63</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw1k-_1Jn7UQmFLW_UYsttp2dLu1mSL-O9NaQ-e3oF5nhl4CbkFNgBg-cN8OJ0NOONyIKSFXMEZ6YFSNmNaynPSY5DrjNucX5KrGNeMgVRgeuSzmBQv2D3Sefvjw4IWO2zoVxs2CzppO2y62m9oEeo0YdqWa6w6moQUddvQuqFT3CaQzrCJdbOio61fYbwmF0u_iXhzyj75eHudP79n42I4en4aZxUY3WUV18JzsEqUFqURC2-0VaW1FcPcGFlKw2wpjOK5tQhCKJTKL3NQWtqy0qJP7o93d6H93mPs3Lrdhya9dAI457kSyeoTOFJVaGMMuHS7UG99-HXA3KE-d6jPHepzp_qSc3d0akT8x5tEgRZ_vAJppg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122295313</pqid></control><display><type>article</type><title>OPODet: Toward Open World Potential Oriented Object Detection in Remote Sensing Images</title><source>IEEE Electronic Library (IEL)</source><creator>Tan, Zhiwen ; Jiang, Zhiguo ; Yuan, Zheming ; Zhang, Haopeng</creator><creatorcontrib>Tan, Zhiwen ; Jiang, Zhiguo ; Yuan, Zheming ; Zhang, Haopeng</creatorcontrib><description>Despite recent advances in object detection, closed-set detectors with fixed training classes often overlook or misclassify unannotated objects during testing. To address this, open world object detection (OWOD) algorithms identify and label these objects as unknown, better aligning with real-world scenarios and human learning. However, remote sensing images, with their arbitrary object orientations and large interclass feature disparities, pose significant challenges for these algorithms. To tackle this, we propose OPODet, an Open-world Potential Oriented object Detection framework for remote sensing images. Specifically, we incorporate the oriented unknown-aware region proposal network (OUA-RPN) into traditional oriented object detection models, enabling the network to predict potential oriented objects. To address the significant interclass feature differences among potential unknown classes, we propose a multiunknown-class clustering aligning prototype (MCAP) learning method to prevent feature collapse in the feature space. In addition, to address the lack of rotation information for potential objects, we introduce a rotation potential target consistency (RPTC) algorithm to impose explicit rotation constraints for generating more accurate potential unknown proposals. Extensive experiments on DIOR-R, DOTA-v1.0, and HRSC2016 datasets demonstrate the effectiveness of our approach in detecting potential oriented objects.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3481951</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Classification algorithms ; Clustering ; Deep learning ; Detectors ; feature clustering ; Feature extraction ; Head ; Machine learning ; Object detection ; Object recognition ; open world tasks ; oriented object detection ; Proposals ; prototype learning ; Prototypes ; Remote sensing ; Rotation ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-c263a21853b8e473da7685b88c0e9774b4708b3752988e1335e45af915648bc63</cites><orcidid>0000-0003-1840-660X ; 0000-0001-8786-2540 ; 0000-0003-1981-8307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10720216$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10720216$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tan, Zhiwen</creatorcontrib><creatorcontrib>Jiang, Zhiguo</creatorcontrib><creatorcontrib>Yuan, Zheming</creatorcontrib><creatorcontrib>Zhang, Haopeng</creatorcontrib><title>OPODet: Toward Open World Potential Oriented Object Detection in Remote Sensing Images</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Despite recent advances in object detection, closed-set detectors with fixed training classes often overlook or misclassify unannotated objects during testing. To address this, open world object detection (OWOD) algorithms identify and label these objects as unknown, better aligning with real-world scenarios and human learning. However, remote sensing images, with their arbitrary object orientations and large interclass feature disparities, pose significant challenges for these algorithms. To tackle this, we propose OPODet, an Open-world Potential Oriented object Detection framework for remote sensing images. Specifically, we incorporate the oriented unknown-aware region proposal network (OUA-RPN) into traditional oriented object detection models, enabling the network to predict potential oriented objects. To address the significant interclass feature differences among potential unknown classes, we propose a multiunknown-class clustering aligning prototype (MCAP) learning method to prevent feature collapse in the feature space. In addition, to address the lack of rotation information for potential objects, we introduce a rotation potential target consistency (RPTC) algorithm to impose explicit rotation constraints for generating more accurate potential unknown proposals. Extensive experiments on DIOR-R, DOTA-v1.0, and HRSC2016 datasets demonstrate the effectiveness of our approach in detecting potential oriented objects.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Classification algorithms</subject><subject>Clustering</subject><subject>Deep learning</subject><subject>Detectors</subject><subject>feature clustering</subject><subject>Feature extraction</subject><subject>Head</subject><subject>Machine learning</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>open world tasks</subject><subject>oriented object detection</subject><subject>Proposals</subject><subject>prototype learning</subject><subject>Prototypes</subject><subject>Remote sensing</subject><subject>Rotation</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw1k-_1Jn7UQmFLW_UYsttp2dLu1mSL-O9NaQ-e3oF5nhl4CbkFNgBg-cN8OJ0NOONyIKSFXMEZ6YFSNmNaynPSY5DrjNucX5KrGNeMgVRgeuSzmBQv2D3Sefvjw4IWO2zoVxs2CzppO2y62m9oEeo0YdqWa6w6moQUddvQuqFT3CaQzrCJdbOio61fYbwmF0u_iXhzyj75eHudP79n42I4en4aZxUY3WUV18JzsEqUFqURC2-0VaW1FcPcGFlKw2wpjOK5tQhCKJTKL3NQWtqy0qJP7o93d6H93mPs3Lrdhya9dAI457kSyeoTOFJVaGMMuHS7UG99-HXA3KE-d6jPHepzp_qSc3d0akT8x5tEgRZ_vAJppg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Tan, Zhiwen</creator><creator>Jiang, Zhiguo</creator><creator>Yuan, Zheming</creator><creator>Zhang, Haopeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1840-660X</orcidid><orcidid>https://orcid.org/0000-0001-8786-2540</orcidid><orcidid>https://orcid.org/0000-0003-1981-8307</orcidid></search><sort><creationdate>2024</creationdate><title>OPODet: Toward Open World Potential Oriented Object Detection in Remote Sensing Images</title><author>Tan, Zhiwen ; Jiang, Zhiguo ; Yuan, Zheming ; Zhang, Haopeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-c263a21853b8e473da7685b88c0e9774b4708b3752988e1335e45af915648bc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Classification algorithms</topic><topic>Clustering</topic><topic>Deep learning</topic><topic>Detectors</topic><topic>feature clustering</topic><topic>Feature extraction</topic><topic>Head</topic><topic>Machine learning</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>open world tasks</topic><topic>oriented object detection</topic><topic>Proposals</topic><topic>prototype learning</topic><topic>Prototypes</topic><topic>Remote sensing</topic><topic>Rotation</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Zhiwen</creatorcontrib><creatorcontrib>Jiang, Zhiguo</creatorcontrib><creatorcontrib>Yuan, Zheming</creatorcontrib><creatorcontrib>Zhang, Haopeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tan, Zhiwen</au><au>Jiang, Zhiguo</au><au>Yuan, Zheming</au><au>Zhang, Haopeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OPODet: Toward Open World Potential Oriented Object Detection in Remote Sensing Images</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Despite recent advances in object detection, closed-set detectors with fixed training classes often overlook or misclassify unannotated objects during testing. To address this, open world object detection (OWOD) algorithms identify and label these objects as unknown, better aligning with real-world scenarios and human learning. However, remote sensing images, with their arbitrary object orientations and large interclass feature disparities, pose significant challenges for these algorithms. To tackle this, we propose OPODet, an Open-world Potential Oriented object Detection framework for remote sensing images. Specifically, we incorporate the oriented unknown-aware region proposal network (OUA-RPN) into traditional oriented object detection models, enabling the network to predict potential oriented objects. To address the significant interclass feature differences among potential unknown classes, we propose a multiunknown-class clustering aligning prototype (MCAP) learning method to prevent feature collapse in the feature space. In addition, to address the lack of rotation information for potential objects, we introduce a rotation potential target consistency (RPTC) algorithm to impose explicit rotation constraints for generating more accurate potential unknown proposals. Extensive experiments on DIOR-R, DOTA-v1.0, and HRSC2016 datasets demonstrate the effectiveness of our approach in detecting potential oriented objects.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3481951</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1840-660X</orcidid><orcidid>https://orcid.org/0000-0001-8786-2540</orcidid><orcidid>https://orcid.org/0000-0003-1981-8307</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-13
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_10720216
source IEEE Electronic Library (IEL)
subjects Accuracy
Algorithms
Classification algorithms
Clustering
Deep learning
Detectors
feature clustering
Feature extraction
Head
Machine learning
Object detection
Object recognition
open world tasks
oriented object detection
Proposals
prototype learning
Prototypes
Remote sensing
Rotation
Training
title OPODet: Toward Open World Potential Oriented Object Detection in Remote Sensing Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A49%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OPODet:%20Toward%20Open%20World%20Potential%20Oriented%20Object%20Detection%20in%20Remote%20Sensing%20Images&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Tan,%20Zhiwen&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3481951&rft_dat=%3Cproquest_RIE%3E3122295313%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3122295313&rft_id=info:pmid/&rft_ieee_id=10720216&rfr_iscdi=true