A Pairwise Grouping-Based Sparse Mapping for Sparse Vector Transmission

Sparse vector coding (SVC) is a promising transmission scheme in ultra-reliable and low-latency communications (URLLC) scenario. Its transmission performance primarily depends on the sparse vector construction, namely sparse mapping. In this letter, we first demonstrate the relationship between comb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2024-12, Vol.28 (12), p.2844-2848
Hauptverfasser: Zhang, Xuewan, Chen, Yadi, Guo, Jingjing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2848
container_issue 12
container_start_page 2844
container_title IEEE communications letters
container_volume 28
creator Zhang, Xuewan
Chen, Yadi
Guo, Jingjing
description Sparse vector coding (SVC) is a promising transmission scheme in ultra-reliable and low-latency communications (URLLC) scenario. Its transmission performance primarily depends on the sparse vector construction, namely sparse mapping. In this letter, we first demonstrate the relationship between combination-based and index redefinition (IR)-based sparse mapping of SVC, from which we conclude that the latter has obtained the shortest sparse vectors with the aid of multiple constellation allocation. There is a trade-off between sparse vector length and the number of allocated constellations to construct an SVC scheme with the optimal performance. Based on this, we propose a pairwise grouping-based SVC (PG-SVC) scheme by grouping multiple constellations in pairs to reduce the number of allocated constellations, in which the constellation allocation is determined by specific transmitted bits. This approach ensures sparse vectors of moderate length, as the number of bits determining the sparse vector length is reduced. Simulation results show that the PG-SVC scheme can achieve higher transmission reliability compared to the existing SVC schemes, especially when coding efficiency is high.
doi_str_mv 10.1109/LCOMM.2024.3481003
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10718303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10718303</ieee_id><sourcerecordid>10_1109_LCOMM_2024_3481003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c149t-8c0d4f87f88ccd11112db26af9ea21e17a6a0e94794c64a2648466e3e4a79a253</originalsourceid><addsrcrecordid>eNpNkN1KxDAQhYMouK6-gHjRF2hN0jQ_l2vRKrSs4OptGdOpRNy2JCvi25u6KzgXM2fOcObiI-SS0Ywxaq7rct00GadcZLnQjNL8iCxYUeiUx3YcNdUmVcroU3IWwjulVPOCLUi1Sh7B-S8XMKn8-Dm54S29gYBd8jSBj24D02wm_ej_rBe0u7htPAxh60Jw43BOTnr4CHhxmEvyfHe7Ke_Tel09lKs6tUyYXaot7USvVa-1tR2LxbtXLqE3CJwhUyCBohHKCCsFcCm0kBJzFKAM8CJfEr7_a_0Ygse-nbzbgv9uGW1nFO0vinZG0R5QxNDVPuQQ8V9AMZ3H8w8Jd1qt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Pairwise Grouping-Based Sparse Mapping for Sparse Vector Transmission</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Xuewan ; Chen, Yadi ; Guo, Jingjing</creator><creatorcontrib>Zhang, Xuewan ; Chen, Yadi ; Guo, Jingjing</creatorcontrib><description>Sparse vector coding (SVC) is a promising transmission scheme in ultra-reliable and low-latency communications (URLLC) scenario. Its transmission performance primarily depends on the sparse vector construction, namely sparse mapping. In this letter, we first demonstrate the relationship between combination-based and index redefinition (IR)-based sparse mapping of SVC, from which we conclude that the latter has obtained the shortest sparse vectors with the aid of multiple constellation allocation. There is a trade-off between sparse vector length and the number of allocated constellations to construct an SVC scheme with the optimal performance. Based on this, we propose a pairwise grouping-based SVC (PG-SVC) scheme by grouping multiple constellations in pairs to reduce the number of allocated constellations, in which the constellation allocation is determined by specific transmitted bits. This approach ensures sparse vectors of moderate length, as the number of bits determining the sparse vector length is reduced. Simulation results show that the PG-SVC scheme can achieve higher transmission reliability compared to the existing SVC schemes, especially when coding efficiency is high.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2024.3481003</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Encoding ; index redefinition ; Indexes ; Modulation ; Receivers ; Reliability ; Resource management ; sparse mapping ; Sparse vector coding ; Static VAr compensators ; Streams ; Ultra reliable low latency communication ; ultra-reliable and low-latency communications ; Vectors</subject><ispartof>IEEE communications letters, 2024-12, Vol.28 (12), p.2844-2848</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c149t-8c0d4f87f88ccd11112db26af9ea21e17a6a0e94794c64a2648466e3e4a79a253</cites><orcidid>0009-0004-2461-2789 ; 0000-0001-6356-9227</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10718303$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10718303$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Xuewan</creatorcontrib><creatorcontrib>Chen, Yadi</creatorcontrib><creatorcontrib>Guo, Jingjing</creatorcontrib><title>A Pairwise Grouping-Based Sparse Mapping for Sparse Vector Transmission</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description>Sparse vector coding (SVC) is a promising transmission scheme in ultra-reliable and low-latency communications (URLLC) scenario. Its transmission performance primarily depends on the sparse vector construction, namely sparse mapping. In this letter, we first demonstrate the relationship between combination-based and index redefinition (IR)-based sparse mapping of SVC, from which we conclude that the latter has obtained the shortest sparse vectors with the aid of multiple constellation allocation. There is a trade-off between sparse vector length and the number of allocated constellations to construct an SVC scheme with the optimal performance. Based on this, we propose a pairwise grouping-based SVC (PG-SVC) scheme by grouping multiple constellations in pairs to reduce the number of allocated constellations, in which the constellation allocation is determined by specific transmitted bits. This approach ensures sparse vectors of moderate length, as the number of bits determining the sparse vector length is reduced. Simulation results show that the PG-SVC scheme can achieve higher transmission reliability compared to the existing SVC schemes, especially when coding efficiency is high.</description><subject>Encoding</subject><subject>index redefinition</subject><subject>Indexes</subject><subject>Modulation</subject><subject>Receivers</subject><subject>Reliability</subject><subject>Resource management</subject><subject>sparse mapping</subject><subject>Sparse vector coding</subject><subject>Static VAr compensators</subject><subject>Streams</subject><subject>Ultra reliable low latency communication</subject><subject>ultra-reliable and low-latency communications</subject><subject>Vectors</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN1KxDAQhYMouK6-gHjRF2hN0jQ_l2vRKrSs4OptGdOpRNy2JCvi25u6KzgXM2fOcObiI-SS0Ywxaq7rct00GadcZLnQjNL8iCxYUeiUx3YcNdUmVcroU3IWwjulVPOCLUi1Sh7B-S8XMKn8-Dm54S29gYBd8jSBj24D02wm_ej_rBe0u7htPAxh60Jw43BOTnr4CHhxmEvyfHe7Ke_Tel09lKs6tUyYXaot7USvVa-1tR2LxbtXLqE3CJwhUyCBohHKCCsFcCm0kBJzFKAM8CJfEr7_a_0Ygse-nbzbgv9uGW1nFO0vinZG0R5QxNDVPuQQ8V9AMZ3H8w8Jd1qt</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Zhang, Xuewan</creator><creator>Chen, Yadi</creator><creator>Guo, Jingjing</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0004-2461-2789</orcidid><orcidid>https://orcid.org/0000-0001-6356-9227</orcidid></search><sort><creationdate>202412</creationdate><title>A Pairwise Grouping-Based Sparse Mapping for Sparse Vector Transmission</title><author>Zhang, Xuewan ; Chen, Yadi ; Guo, Jingjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c149t-8c0d4f87f88ccd11112db26af9ea21e17a6a0e94794c64a2648466e3e4a79a253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Encoding</topic><topic>index redefinition</topic><topic>Indexes</topic><topic>Modulation</topic><topic>Receivers</topic><topic>Reliability</topic><topic>Resource management</topic><topic>sparse mapping</topic><topic>Sparse vector coding</topic><topic>Static VAr compensators</topic><topic>Streams</topic><topic>Ultra reliable low latency communication</topic><topic>ultra-reliable and low-latency communications</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xuewan</creatorcontrib><creatorcontrib>Chen, Yadi</creatorcontrib><creatorcontrib>Guo, Jingjing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xuewan</au><au>Chen, Yadi</au><au>Guo, Jingjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Pairwise Grouping-Based Sparse Mapping for Sparse Vector Transmission</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2024-12</date><risdate>2024</risdate><volume>28</volume><issue>12</issue><spage>2844</spage><epage>2848</epage><pages>2844-2848</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Sparse vector coding (SVC) is a promising transmission scheme in ultra-reliable and low-latency communications (URLLC) scenario. Its transmission performance primarily depends on the sparse vector construction, namely sparse mapping. In this letter, we first demonstrate the relationship between combination-based and index redefinition (IR)-based sparse mapping of SVC, from which we conclude that the latter has obtained the shortest sparse vectors with the aid of multiple constellation allocation. There is a trade-off between sparse vector length and the number of allocated constellations to construct an SVC scheme with the optimal performance. Based on this, we propose a pairwise grouping-based SVC (PG-SVC) scheme by grouping multiple constellations in pairs to reduce the number of allocated constellations, in which the constellation allocation is determined by specific transmitted bits. This approach ensures sparse vectors of moderate length, as the number of bits determining the sparse vector length is reduced. Simulation results show that the PG-SVC scheme can achieve higher transmission reliability compared to the existing SVC schemes, especially when coding efficiency is high.</abstract><pub>IEEE</pub><doi>10.1109/LCOMM.2024.3481003</doi><tpages>5</tpages><orcidid>https://orcid.org/0009-0004-2461-2789</orcidid><orcidid>https://orcid.org/0000-0001-6356-9227</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2024-12, Vol.28 (12), p.2844-2848
issn 1089-7798
1558-2558
language eng
recordid cdi_ieee_primary_10718303
source IEEE Electronic Library (IEL)
subjects Encoding
index redefinition
Indexes
Modulation
Receivers
Reliability
Resource management
sparse mapping
Sparse vector coding
Static VAr compensators
Streams
Ultra reliable low latency communication
ultra-reliable and low-latency communications
Vectors
title A Pairwise Grouping-Based Sparse Mapping for Sparse Vector Transmission
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Pairwise%20Grouping-Based%20Sparse%20Mapping%20for%20Sparse%20Vector%20Transmission&rft.jtitle=IEEE%20communications%20letters&rft.au=Zhang,%20Xuewan&rft.date=2024-12&rft.volume=28&rft.issue=12&rft.spage=2844&rft.epage=2848&rft.pages=2844-2848&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2024.3481003&rft_dat=%3Ccrossref_RIE%3E10_1109_LCOMM_2024_3481003%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10718303&rfr_iscdi=true