Battery Pack Sizing Based on Experimental Characterization and Simulation Validation

Electrification of internal-combustion-engine vehicles represents a common requirement for urban areas interested in reducing the quantity of air pollution and toxic gas emissions. Along with the transition of private solutions toward individual mobility with electric cars, vehicle electrification f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.176270-176279
Hauptverfasser: Drivet-Gonzalez, Aline Raquel Lily, Cespi, Riccardo, Tudon-Martinez, Juan C., Lozoya-Santos, Jorge De-J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 176279
container_issue
container_start_page 176270
container_title IEEE access
container_volume 12
creator Drivet-Gonzalez, Aline Raquel Lily
Cespi, Riccardo
Tudon-Martinez, Juan C.
Lozoya-Santos, Jorge De-J.
description Electrification of internal-combustion-engine vehicles represents a common requirement for urban areas interested in reducing the quantity of air pollution and toxic gas emissions. Along with the transition of private solutions toward individual mobility with electric cars, vehicle electrification for community mobility reaches a high additional value of the atmospheric decarbonization global objective. To this aim, this paper presents both experimental and simulation approaches, for vehicle electrification of student mobility at Tecnológico de Monterrey, where dedicated transportation operates several times a day. The driving cycle and the road slope are determined by making use of GPS based mobile apps first. Then, the daily energy consumption is calculated, and the battery sizing is defined by comparing several electric cells. The safer battery is chosen, and the internal resistance and open-circuit voltage are then characterized with experimental tests.The paper presents a methodology for accurately assessing the energy demands of electric buses. These findings provide insights for battery pack design and selection based on driving cycles and energy requirements, which may be used to accelerate the electrification of bus routes or scale it to large bus fleets. Finally, a co-simulation with Matlab/Simulink and CarSim shows the behavior of the electric powertrain highlighting the quality and performances of the obtained results.
doi_str_mv 10.1109/ACCESS.2024.3481058
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10717490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10717490</ieee_id><doaj_id>oai_doaj_org_article_98a7964dfa4d4e42a5892d24be19b6dd</doaj_id><sourcerecordid>3140641102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1592-faf9c60ddbfb15283611d06625e381f3357228c6378c7500a68ca9e3a0f116ea3</originalsourceid><addsrcrecordid>eNpNUU1PAjEQ3RhNNMgv0MMmnsF-b3uEDSoJiSag12Zou1hcd7G7JMKvt7DEMJeZzrz3OpmXJHcYDTFG6nGU55P5fEgQYUPKJEZcXiQ3BAs1oJyKy7P6Ouk3zRrFkLHFs5tkMYa2dWGXvoH5Sud-76tVOobG2bSu0snvxgX_7aoWyjT_hAAmgv0eWh-nUNnI-N6W3fMDSm-P5W1yVUDZuP4p95L3p8kifxnMXp-n-Wg2MJgrMiigUEYga5fFEnMiqcDYIiEId1TiglKeESKNoJk0GUcIhDSgHAVUYCwc0F4y7XRtDWu9iZtC2OkavD426rDSEFpvSqeVhEwJZgtgljlGgEtFLGFLh9VSWBu1HjqtTah_tq5p9brehiqurylmSLB4axJRtEOZUDdNcMX_rxjpgxu6c0Mf3NAnNyLrvmN559wZI8MZU4j-AQHhhTc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3140641102</pqid></control><display><type>article</type><title>Battery Pack Sizing Based on Experimental Characterization and Simulation Validation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Drivet-Gonzalez, Aline Raquel Lily ; Cespi, Riccardo ; Tudon-Martinez, Juan C. ; Lozoya-Santos, Jorge De-J.</creator><creatorcontrib>Drivet-Gonzalez, Aline Raquel Lily ; Cespi, Riccardo ; Tudon-Martinez, Juan C. ; Lozoya-Santos, Jorge De-J.</creatorcontrib><description>Electrification of internal-combustion-engine vehicles represents a common requirement for urban areas interested in reducing the quantity of air pollution and toxic gas emissions. Along with the transition of private solutions toward individual mobility with electric cars, vehicle electrification for community mobility reaches a high additional value of the atmospheric decarbonization global objective. To this aim, this paper presents both experimental and simulation approaches, for vehicle electrification of student mobility at Tecnológico de Monterrey, where dedicated transportation operates several times a day. The driving cycle and the road slope are determined by making use of GPS based mobile apps first. Then, the daily energy consumption is calculated, and the battery sizing is defined by comparing several electric cells. The safer battery is chosen, and the internal resistance and open-circuit voltage are then characterized with experimental tests.The paper presents a methodology for accurately assessing the energy demands of electric buses. These findings provide insights for battery pack design and selection based on driving cycles and energy requirements, which may be used to accelerate the electrification of bus routes or scale it to large bus fleets. Finally, a co-simulation with Matlab/Simulink and CarSim shows the behavior of the electric powertrain highlighting the quality and performances of the obtained results.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3481058</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Applications programs ; Automobiles ; Batteries ; Battery cycles ; Battery internal resistance ; Buses (vehicles) ; CarSim ; Costs ; Driving ; Electric cells ; Electric vehicles ; Electrification ; Energy consumption ; Energy requirements ; Immune system ; Internal combustion engines ; Keysight ; Low carbon economy ; Mathematical models ; Mobile computing ; Open circuit voltage ; Powertrain ; Public transportation ; Roads ; Simulation ; Sizing ; Transportation ; Vehicle emissions</subject><ispartof>IEEE access, 2024, Vol.12, p.176270-176279</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8452-3076 ; 0000-0003-0646-1871 ; 0000-0002-7517-4078</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10717490$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Drivet-Gonzalez, Aline Raquel Lily</creatorcontrib><creatorcontrib>Cespi, Riccardo</creatorcontrib><creatorcontrib>Tudon-Martinez, Juan C.</creatorcontrib><creatorcontrib>Lozoya-Santos, Jorge De-J.</creatorcontrib><title>Battery Pack Sizing Based on Experimental Characterization and Simulation Validation</title><title>IEEE access</title><addtitle>Access</addtitle><description>Electrification of internal-combustion-engine vehicles represents a common requirement for urban areas interested in reducing the quantity of air pollution and toxic gas emissions. Along with the transition of private solutions toward individual mobility with electric cars, vehicle electrification for community mobility reaches a high additional value of the atmospheric decarbonization global objective. To this aim, this paper presents both experimental and simulation approaches, for vehicle electrification of student mobility at Tecnológico de Monterrey, where dedicated transportation operates several times a day. The driving cycle and the road slope are determined by making use of GPS based mobile apps first. Then, the daily energy consumption is calculated, and the battery sizing is defined by comparing several electric cells. The safer battery is chosen, and the internal resistance and open-circuit voltage are then characterized with experimental tests.The paper presents a methodology for accurately assessing the energy demands of electric buses. These findings provide insights for battery pack design and selection based on driving cycles and energy requirements, which may be used to accelerate the electrification of bus routes or scale it to large bus fleets. Finally, a co-simulation with Matlab/Simulink and CarSim shows the behavior of the electric powertrain highlighting the quality and performances of the obtained results.</description><subject>Applications programs</subject><subject>Automobiles</subject><subject>Batteries</subject><subject>Battery cycles</subject><subject>Battery internal resistance</subject><subject>Buses (vehicles)</subject><subject>CarSim</subject><subject>Costs</subject><subject>Driving</subject><subject>Electric cells</subject><subject>Electric vehicles</subject><subject>Electrification</subject><subject>Energy consumption</subject><subject>Energy requirements</subject><subject>Immune system</subject><subject>Internal combustion engines</subject><subject>Keysight</subject><subject>Low carbon economy</subject><subject>Mathematical models</subject><subject>Mobile computing</subject><subject>Open circuit voltage</subject><subject>Powertrain</subject><subject>Public transportation</subject><subject>Roads</subject><subject>Simulation</subject><subject>Sizing</subject><subject>Transportation</subject><subject>Vehicle emissions</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PAjEQ3RhNNMgv0MMmnsF-b3uEDSoJiSag12Zou1hcd7G7JMKvt7DEMJeZzrz3OpmXJHcYDTFG6nGU55P5fEgQYUPKJEZcXiQ3BAs1oJyKy7P6Ouk3zRrFkLHFs5tkMYa2dWGXvoH5Sud-76tVOobG2bSu0snvxgX_7aoWyjT_hAAmgv0eWh-nUNnI-N6W3fMDSm-P5W1yVUDZuP4p95L3p8kifxnMXp-n-Wg2MJgrMiigUEYga5fFEnMiqcDYIiEId1TiglKeESKNoJk0GUcIhDSgHAVUYCwc0F4y7XRtDWu9iZtC2OkavD426rDSEFpvSqeVhEwJZgtgljlGgEtFLGFLh9VSWBu1HjqtTah_tq5p9brehiqurylmSLB4axJRtEOZUDdNcMX_rxjpgxu6c0Mf3NAnNyLrvmN559wZI8MZU4j-AQHhhTc</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Drivet-Gonzalez, Aline Raquel Lily</creator><creator>Cespi, Riccardo</creator><creator>Tudon-Martinez, Juan C.</creator><creator>Lozoya-Santos, Jorge De-J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8452-3076</orcidid><orcidid>https://orcid.org/0000-0003-0646-1871</orcidid><orcidid>https://orcid.org/0000-0002-7517-4078</orcidid></search><sort><creationdate>2024</creationdate><title>Battery Pack Sizing Based on Experimental Characterization and Simulation Validation</title><author>Drivet-Gonzalez, Aline Raquel Lily ; Cespi, Riccardo ; Tudon-Martinez, Juan C. ; Lozoya-Santos, Jorge De-J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1592-faf9c60ddbfb15283611d06625e381f3357228c6378c7500a68ca9e3a0f116ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications programs</topic><topic>Automobiles</topic><topic>Batteries</topic><topic>Battery cycles</topic><topic>Battery internal resistance</topic><topic>Buses (vehicles)</topic><topic>CarSim</topic><topic>Costs</topic><topic>Driving</topic><topic>Electric cells</topic><topic>Electric vehicles</topic><topic>Electrification</topic><topic>Energy consumption</topic><topic>Energy requirements</topic><topic>Immune system</topic><topic>Internal combustion engines</topic><topic>Keysight</topic><topic>Low carbon economy</topic><topic>Mathematical models</topic><topic>Mobile computing</topic><topic>Open circuit voltage</topic><topic>Powertrain</topic><topic>Public transportation</topic><topic>Roads</topic><topic>Simulation</topic><topic>Sizing</topic><topic>Transportation</topic><topic>Vehicle emissions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drivet-Gonzalez, Aline Raquel Lily</creatorcontrib><creatorcontrib>Cespi, Riccardo</creatorcontrib><creatorcontrib>Tudon-Martinez, Juan C.</creatorcontrib><creatorcontrib>Lozoya-Santos, Jorge De-J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drivet-Gonzalez, Aline Raquel Lily</au><au>Cespi, Riccardo</au><au>Tudon-Martinez, Juan C.</au><au>Lozoya-Santos, Jorge De-J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Battery Pack Sizing Based on Experimental Characterization and Simulation Validation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>176270</spage><epage>176279</epage><pages>176270-176279</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Electrification of internal-combustion-engine vehicles represents a common requirement for urban areas interested in reducing the quantity of air pollution and toxic gas emissions. Along with the transition of private solutions toward individual mobility with electric cars, vehicle electrification for community mobility reaches a high additional value of the atmospheric decarbonization global objective. To this aim, this paper presents both experimental and simulation approaches, for vehicle electrification of student mobility at Tecnológico de Monterrey, where dedicated transportation operates several times a day. The driving cycle and the road slope are determined by making use of GPS based mobile apps first. Then, the daily energy consumption is calculated, and the battery sizing is defined by comparing several electric cells. The safer battery is chosen, and the internal resistance and open-circuit voltage are then characterized with experimental tests.The paper presents a methodology for accurately assessing the energy demands of electric buses. These findings provide insights for battery pack design and selection based on driving cycles and energy requirements, which may be used to accelerate the electrification of bus routes or scale it to large bus fleets. Finally, a co-simulation with Matlab/Simulink and CarSim shows the behavior of the electric powertrain highlighting the quality and performances of the obtained results.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3481058</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8452-3076</orcidid><orcidid>https://orcid.org/0000-0003-0646-1871</orcidid><orcidid>https://orcid.org/0000-0002-7517-4078</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.176270-176279
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10717490
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Applications programs
Automobiles
Batteries
Battery cycles
Battery internal resistance
Buses (vehicles)
CarSim
Costs
Driving
Electric cells
Electric vehicles
Electrification
Energy consumption
Energy requirements
Immune system
Internal combustion engines
Keysight
Low carbon economy
Mathematical models
Mobile computing
Open circuit voltage
Powertrain
Public transportation
Roads
Simulation
Sizing
Transportation
Vehicle emissions
title Battery Pack Sizing Based on Experimental Characterization and Simulation Validation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A04%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Battery%20Pack%20Sizing%20Based%20on%20Experimental%20Characterization%20and%20Simulation%20Validation&rft.jtitle=IEEE%20access&rft.au=Drivet-Gonzalez,%20Aline%20Raquel%20Lily&rft.date=2024&rft.volume=12&rft.spage=176270&rft.epage=176279&rft.pages=176270-176279&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3481058&rft_dat=%3Cproquest_ieee_%3E3140641102%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3140641102&rft_id=info:pmid/&rft_ieee_id=10717490&rft_doaj_id=oai_doaj_org_article_98a7964dfa4d4e42a5892d24be19b6dd&rfr_iscdi=true