Tensor-Empowered Hardware-Friendly Lightweight Deep Neural Networks for Vehicular Edge Computing

The high memory footprint, high computational overhead and high power consumption of deep neural networks are the main bottlenecks in deploying network models to vehicular edge devices. Furthermore, in the collaborative learning process, the large number of training parameters can cause high communi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on consumer electronics 2024-10, p.1-1
Hauptverfasser: Liu, Debin, Yang, Laurence T., Zhao, Ruonan, Wang, Xiaokang, Li, Zhe, Zhao, Honglu, Cui, Jinhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on consumer electronics
container_volume
creator Liu, Debin
Yang, Laurence T.
Zhao, Ruonan
Wang, Xiaokang
Li, Zhe
Zhao, Honglu
Cui, Jinhua
description The high memory footprint, high computational overhead and high power consumption of deep neural networks are the main bottlenecks in deploying network models to vehicular edge devices. Furthermore, in the collaborative learning process, the large number of training parameters can cause high communication overhead between the vehicular edge devices and the cloud. The redundant floating-point operations and training parameters are the main "culprits" for these bottlenecks. To solve the above problems, we propose the lightweight tensor linear shift layer and the lightweight tensor convolutional shift layer, and two models based on the lightweight tensor shift layer, LTS-α and LTS-β are proposed. Firstly, the weight matrix and weight tensor in the network model are represented in the form of a chain-structured weight tensor kernel; secondly, fewer bits are used to represent the values in the weight tensor kernel; finally, the floating-point multiplication operations in the network model are replaced with inexpensive sign flipping and bitwise shift, as a way to reduce the amount of floating-point computation and memory footprint in the deep neural network model, and to speed up the training and inference process of the model, thereby reducing the power consumption of the model at runtime. To evaluate the superiority of our proposed model, we conduct experiments on several real datasets and compare them with the relevant mainstream method. The experimental results show that both our proposed LTS-α and LTS-β can achieve comparable or even higher performance on real tasks than the relevant mainstream method. Moreover, LTS-α and LTS-β have a lower memory footprint and computational overhead than relevant mainstream methods, and the training process and inference process of the models consume less energy. Therefore, LTS-α and LTS-β are more suitable for deployment to resource-constrained vehicular edge devices to provide more general intelligence services.
doi_str_mv 10.1109/TCE.2024.3480139
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10717426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10717426</ieee_id><sourcerecordid>10_1109_TCE_2024_3480139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c626-9aaf7da8c48f4fa79bfb790117a2f45fe403244351a5561690f2fb1899091343</originalsourceid><addsrcrecordid>eNpNkLFOwzAURS0EEqWwMzD4B1zes504HlEIFKmCgYo1uMlzG0ibyG4V9e9p1Q4s9y733OEwdo8wQQT7OM-LiQSpJ0pngMpesBEmSSY0SnPJRgA2EwpSdc1uYvwBQJ3IbMS-57SJXRDFuu8GClTzqQv14AKJl9DQpm73fNYsV9uBjsmfiXr-Trvg2kNthy78Ru67wL9o1VS71gVe1Eviebfud9tms7xlV961ke7OPWafL8U8n4rZx-tb_jQTVSpTYZ3zpnZZpTOvvTN24RfGAqJx0uvEkwYltVYJuiRJMbXgpV9gZi1YVFqNGZxeq9DFGMiXfWjWLuxLhPLopzz4KY9-yrOfA_JwQhoi-jc3aLRM1R_v_2Hs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tensor-Empowered Hardware-Friendly Lightweight Deep Neural Networks for Vehicular Edge Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Debin ; Yang, Laurence T. ; Zhao, Ruonan ; Wang, Xiaokang ; Li, Zhe ; Zhao, Honglu ; Cui, Jinhua</creator><creatorcontrib>Liu, Debin ; Yang, Laurence T. ; Zhao, Ruonan ; Wang, Xiaokang ; Li, Zhe ; Zhao, Honglu ; Cui, Jinhua</creatorcontrib><description>The high memory footprint, high computational overhead and high power consumption of deep neural networks are the main bottlenecks in deploying network models to vehicular edge devices. Furthermore, in the collaborative learning process, the large number of training parameters can cause high communication overhead between the vehicular edge devices and the cloud. The redundant floating-point operations and training parameters are the main "culprits" for these bottlenecks. To solve the above problems, we propose the lightweight tensor linear shift layer and the lightweight tensor convolutional shift layer, and two models based on the lightweight tensor shift layer, LTS-α and LTS-β are proposed. Firstly, the weight matrix and weight tensor in the network model are represented in the form of a chain-structured weight tensor kernel; secondly, fewer bits are used to represent the values in the weight tensor kernel; finally, the floating-point multiplication operations in the network model are replaced with inexpensive sign flipping and bitwise shift, as a way to reduce the amount of floating-point computation and memory footprint in the deep neural network model, and to speed up the training and inference process of the model, thereby reducing the power consumption of the model at runtime. To evaluate the superiority of our proposed model, we conduct experiments on several real datasets and compare them with the relevant mainstream method. The experimental results show that both our proposed LTS-α and LTS-β can achieve comparable or even higher performance on real tasks than the relevant mainstream method. Moreover, LTS-α and LTS-β have a lower memory footprint and computational overhead than relevant mainstream methods, and the training process and inference process of the models consume less energy. Therefore, LTS-α and LTS-β are more suitable for deployment to resource-constrained vehicular edge devices to provide more general intelligence services.</description><identifier>ISSN: 0098-3063</identifier><identifier>EISSN: 1558-4127</identifier><identifier>DOI: 10.1109/TCE.2024.3480139</identifier><identifier>CODEN: ITCEDA</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Analytical models ; Artificial neural networks ; Computational modeling ; Data models ; deep neural network acceleration ; edge computing ; Kernel ; Memory management ; Power demand ; shift operation ; tensor decomposition ; Tensors ; Training</subject><ispartof>IEEE transactions on consumer electronics, 2024-10, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5233-9637 ; 0000-0002-0981-6204 ; 0000-0003-1491-122X ; 0000-0002-7986-4244 ; 0000-0002-3252-7937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10717426$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10717426$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Debin</creatorcontrib><creatorcontrib>Yang, Laurence T.</creatorcontrib><creatorcontrib>Zhao, Ruonan</creatorcontrib><creatorcontrib>Wang, Xiaokang</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Zhao, Honglu</creatorcontrib><creatorcontrib>Cui, Jinhua</creatorcontrib><title>Tensor-Empowered Hardware-Friendly Lightweight Deep Neural Networks for Vehicular Edge Computing</title><title>IEEE transactions on consumer electronics</title><addtitle>T-CE</addtitle><description>The high memory footprint, high computational overhead and high power consumption of deep neural networks are the main bottlenecks in deploying network models to vehicular edge devices. Furthermore, in the collaborative learning process, the large number of training parameters can cause high communication overhead between the vehicular edge devices and the cloud. The redundant floating-point operations and training parameters are the main "culprits" for these bottlenecks. To solve the above problems, we propose the lightweight tensor linear shift layer and the lightweight tensor convolutional shift layer, and two models based on the lightweight tensor shift layer, LTS-α and LTS-β are proposed. Firstly, the weight matrix and weight tensor in the network model are represented in the form of a chain-structured weight tensor kernel; secondly, fewer bits are used to represent the values in the weight tensor kernel; finally, the floating-point multiplication operations in the network model are replaced with inexpensive sign flipping and bitwise shift, as a way to reduce the amount of floating-point computation and memory footprint in the deep neural network model, and to speed up the training and inference process of the model, thereby reducing the power consumption of the model at runtime. To evaluate the superiority of our proposed model, we conduct experiments on several real datasets and compare them with the relevant mainstream method. The experimental results show that both our proposed LTS-α and LTS-β can achieve comparable or even higher performance on real tasks than the relevant mainstream method. Moreover, LTS-α and LTS-β have a lower memory footprint and computational overhead than relevant mainstream methods, and the training process and inference process of the models consume less energy. Therefore, LTS-α and LTS-β are more suitable for deployment to resource-constrained vehicular edge devices to provide more general intelligence services.</description><subject>Accuracy</subject><subject>Analytical models</subject><subject>Artificial neural networks</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>deep neural network acceleration</subject><subject>edge computing</subject><subject>Kernel</subject><subject>Memory management</subject><subject>Power demand</subject><subject>shift operation</subject><subject>tensor decomposition</subject><subject>Tensors</subject><subject>Training</subject><issn>0098-3063</issn><issn>1558-4127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkLFOwzAURS0EEqWwMzD4B1zes504HlEIFKmCgYo1uMlzG0ibyG4V9e9p1Q4s9y733OEwdo8wQQT7OM-LiQSpJ0pngMpesBEmSSY0SnPJRgA2EwpSdc1uYvwBQJ3IbMS-57SJXRDFuu8GClTzqQv14AKJl9DQpm73fNYsV9uBjsmfiXr-Trvg2kNthy78Ru67wL9o1VS71gVe1Eviebfud9tms7xlV961ke7OPWafL8U8n4rZx-tb_jQTVSpTYZ3zpnZZpTOvvTN24RfGAqJx0uvEkwYltVYJuiRJMbXgpV9gZi1YVFqNGZxeq9DFGMiXfWjWLuxLhPLopzz4KY9-yrOfA_JwQhoi-jc3aLRM1R_v_2Hs</recordid><startdate>20241014</startdate><enddate>20241014</enddate><creator>Liu, Debin</creator><creator>Yang, Laurence T.</creator><creator>Zhao, Ruonan</creator><creator>Wang, Xiaokang</creator><creator>Li, Zhe</creator><creator>Zhao, Honglu</creator><creator>Cui, Jinhua</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5233-9637</orcidid><orcidid>https://orcid.org/0000-0002-0981-6204</orcidid><orcidid>https://orcid.org/0000-0003-1491-122X</orcidid><orcidid>https://orcid.org/0000-0002-7986-4244</orcidid><orcidid>https://orcid.org/0000-0002-3252-7937</orcidid></search><sort><creationdate>20241014</creationdate><title>Tensor-Empowered Hardware-Friendly Lightweight Deep Neural Networks for Vehicular Edge Computing</title><author>Liu, Debin ; Yang, Laurence T. ; Zhao, Ruonan ; Wang, Xiaokang ; Li, Zhe ; Zhao, Honglu ; Cui, Jinhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c626-9aaf7da8c48f4fa79bfb790117a2f45fe403244351a5561690f2fb1899091343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Analytical models</topic><topic>Artificial neural networks</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>deep neural network acceleration</topic><topic>edge computing</topic><topic>Kernel</topic><topic>Memory management</topic><topic>Power demand</topic><topic>shift operation</topic><topic>tensor decomposition</topic><topic>Tensors</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Debin</creatorcontrib><creatorcontrib>Yang, Laurence T.</creatorcontrib><creatorcontrib>Zhao, Ruonan</creatorcontrib><creatorcontrib>Wang, Xiaokang</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Zhao, Honglu</creatorcontrib><creatorcontrib>Cui, Jinhua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on consumer electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Debin</au><au>Yang, Laurence T.</au><au>Zhao, Ruonan</au><au>Wang, Xiaokang</au><au>Li, Zhe</au><au>Zhao, Honglu</au><au>Cui, Jinhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensor-Empowered Hardware-Friendly Lightweight Deep Neural Networks for Vehicular Edge Computing</atitle><jtitle>IEEE transactions on consumer electronics</jtitle><stitle>T-CE</stitle><date>2024-10-14</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0098-3063</issn><eissn>1558-4127</eissn><coden>ITCEDA</coden><abstract>The high memory footprint, high computational overhead and high power consumption of deep neural networks are the main bottlenecks in deploying network models to vehicular edge devices. Furthermore, in the collaborative learning process, the large number of training parameters can cause high communication overhead between the vehicular edge devices and the cloud. The redundant floating-point operations and training parameters are the main "culprits" for these bottlenecks. To solve the above problems, we propose the lightweight tensor linear shift layer and the lightweight tensor convolutional shift layer, and two models based on the lightweight tensor shift layer, LTS-α and LTS-β are proposed. Firstly, the weight matrix and weight tensor in the network model are represented in the form of a chain-structured weight tensor kernel; secondly, fewer bits are used to represent the values in the weight tensor kernel; finally, the floating-point multiplication operations in the network model are replaced with inexpensive sign flipping and bitwise shift, as a way to reduce the amount of floating-point computation and memory footprint in the deep neural network model, and to speed up the training and inference process of the model, thereby reducing the power consumption of the model at runtime. To evaluate the superiority of our proposed model, we conduct experiments on several real datasets and compare them with the relevant mainstream method. The experimental results show that both our proposed LTS-α and LTS-β can achieve comparable or even higher performance on real tasks than the relevant mainstream method. Moreover, LTS-α and LTS-β have a lower memory footprint and computational overhead than relevant mainstream methods, and the training process and inference process of the models consume less energy. Therefore, LTS-α and LTS-β are more suitable for deployment to resource-constrained vehicular edge devices to provide more general intelligence services.</abstract><pub>IEEE</pub><doi>10.1109/TCE.2024.3480139</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5233-9637</orcidid><orcidid>https://orcid.org/0000-0002-0981-6204</orcidid><orcidid>https://orcid.org/0000-0003-1491-122X</orcidid><orcidid>https://orcid.org/0000-0002-7986-4244</orcidid><orcidid>https://orcid.org/0000-0002-3252-7937</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0098-3063
ispartof IEEE transactions on consumer electronics, 2024-10, p.1-1
issn 0098-3063
1558-4127
language eng
recordid cdi_ieee_primary_10717426
source IEEE Electronic Library (IEL)
subjects Accuracy
Analytical models
Artificial neural networks
Computational modeling
Data models
deep neural network acceleration
edge computing
Kernel
Memory management
Power demand
shift operation
tensor decomposition
Tensors
Training
title Tensor-Empowered Hardware-Friendly Lightweight Deep Neural Networks for Vehicular Edge Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A22%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensor-Empowered%20Hardware-Friendly%20Lightweight%20Deep%20Neural%20Networks%20for%20Vehicular%20Edge%20Computing&rft.jtitle=IEEE%20transactions%20on%20consumer%20electronics&rft.au=Liu,%20Debin&rft.date=2024-10-14&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0098-3063&rft.eissn=1558-4127&rft.coden=ITCEDA&rft_id=info:doi/10.1109/TCE.2024.3480139&rft_dat=%3Ccrossref_RIE%3E10_1109_TCE_2024_3480139%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10717426&rfr_iscdi=true