Navigating the Depths: A Comprehensive Survey of Deep Learning for Passive Underwater Acoustic Target Recognition

The field of deep learning is a rapidly developing research area with numerous applications across multiple domains. Sonar (SOund Navigation And Ranging) processing has traditionally been a field of statistical analysis. However, in the past ten to fifteen years, the rapid growth of deep learning ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.154092-154118
Hauptverfasser: Muller, Nils, Reermann, Jens, Meisen, Tobias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154118
container_issue
container_start_page 154092
container_title IEEE access
container_volume 12
creator Muller, Nils
Reermann, Jens
Meisen, Tobias
description The field of deep learning is a rapidly developing research area with numerous applications across multiple domains. Sonar (SOund Navigation And Ranging) processing has traditionally been a field of statistical analysis. However, in the past ten to fifteen years, the rapid growth of deep learning has challenged classical approaches with modern deep learning-based methods. This survey provides a systematic overview of the Underwater Acoustic Target Recognition (UATR) domain within the area of deep learning. The objective is to highlight popular design choices and evaluate the commonalities and differences of the investigated techniques in relation to the selected architectures and pre-processing methods. Furthermore, this survey examines the state of UATR literature through the identification of prominent conferences and journals which points new researchers in directions where to allocate UATR related publications. Additionally, popular datasets and available benchmarks are identified and analysed for complexity coverage. This work targets researchers new to the field as well as experienced researchers that want to get a broader overview. Nonetheless, experienced sonar engineers with a strong background within classical analysis also benefit from this survey.
doi_str_mv 10.1109/ACCESS.2024.3480788
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10716649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10716649</ieee_id><doaj_id>oai_doaj_org_article_7e9f5c52638f4a3fa8da3fe5bb3f4935</doaj_id><sourcerecordid>3122296101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-3925ecdf88484c7e66333c75e7375c6ddba7e22befd67b0a4ce906a21bbb6abb3</originalsourceid><addsrcrecordid>eNpNUU1rGzEQFaWBBje_IDkIerarj11J25vZJm3AtCVOzkKrHa1lktVGkl3y7ytnQ8kcZobhvTfDPIQuKVlRSpqv67a93m5XjLBqxStFpFIf0DmjolnymouP7_pP6CKlPSmhyqiW5-j5lzn6wWQ_DjjvAH-HKe_SN7zGbXiaIuxgTP4IeHuIR3jBwRUETHgDJo4njgsR_zHpFfMw9hD_mgwRr204pOwtvjdxgIzvwIZh9NmH8TM6c-YxwcVbXaCHm-v79udy8_vHbbveLC1TTV7yhtVge6dUpSorQQjOuZU1SC5rK_q-MxIY68D1QnbEVBYaIgyjXdcJ03V8gW5n3T6YvZ6ifzLxRQfj9esgxEGbWE58BC2hcbWtmeDKVYY7o_qSoS4qrmrK4xboy6w1xfB8gJT1PhziWM7XnDLGGkEJLSg-o2wMKUVw_7dSok9W6dkqfbJKv1lVWFczywPAO4akQpTl_wBs0ZF4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122296101</pqid></control><display><type>article</type><title>Navigating the Depths: A Comprehensive Survey of Deep Learning for Passive Underwater Acoustic Target Recognition</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Muller, Nils ; Reermann, Jens ; Meisen, Tobias</creator><creatorcontrib>Muller, Nils ; Reermann, Jens ; Meisen, Tobias</creatorcontrib><description>The field of deep learning is a rapidly developing research area with numerous applications across multiple domains. Sonar (SOund Navigation And Ranging) processing has traditionally been a field of statistical analysis. However, in the past ten to fifteen years, the rapid growth of deep learning has challenged classical approaches with modern deep learning-based methods. This survey provides a systematic overview of the Underwater Acoustic Target Recognition (UATR) domain within the area of deep learning. The objective is to highlight popular design choices and evaluate the commonalities and differences of the investigated techniques in relation to the selected architectures and pre-processing methods. Furthermore, this survey examines the state of UATR literature through the identification of prominent conferences and journals which points new researchers in directions where to allocate UATR related publications. Additionally, popular datasets and available benchmarks are identified and analysed for complexity coverage. This work targets researchers new to the field as well as experienced researchers that want to get a broader overview. Nonetheless, experienced sonar engineers with a strong background within classical analysis also benefit from this survey.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3480788</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Deep learning ; passive sonar classification ; Reproducibility of results ; Reviews ; Sensors ; Sonar ; Sonar navigation ; Statistical analysis ; Surveys ; Target recognition ; underwater acoustic target recognition ; Underwater acoustics</subject><ispartof>IEEE access, 2024, Vol.12, p.154092-154118</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-3925ecdf88484c7e66333c75e7375c6ddba7e22befd67b0a4ce906a21bbb6abb3</cites><orcidid>0009-0000-6627-7019 ; 0000-0002-0467-0947 ; 0000-0002-1969-559X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10716649$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Muller, Nils</creatorcontrib><creatorcontrib>Reermann, Jens</creatorcontrib><creatorcontrib>Meisen, Tobias</creatorcontrib><title>Navigating the Depths: A Comprehensive Survey of Deep Learning for Passive Underwater Acoustic Target Recognition</title><title>IEEE access</title><addtitle>Access</addtitle><description>The field of deep learning is a rapidly developing research area with numerous applications across multiple domains. Sonar (SOund Navigation And Ranging) processing has traditionally been a field of statistical analysis. However, in the past ten to fifteen years, the rapid growth of deep learning has challenged classical approaches with modern deep learning-based methods. This survey provides a systematic overview of the Underwater Acoustic Target Recognition (UATR) domain within the area of deep learning. The objective is to highlight popular design choices and evaluate the commonalities and differences of the investigated techniques in relation to the selected architectures and pre-processing methods. Furthermore, this survey examines the state of UATR literature through the identification of prominent conferences and journals which points new researchers in directions where to allocate UATR related publications. Additionally, popular datasets and available benchmarks are identified and analysed for complexity coverage. This work targets researchers new to the field as well as experienced researchers that want to get a broader overview. Nonetheless, experienced sonar engineers with a strong background within classical analysis also benefit from this survey.</description><subject>Deep learning</subject><subject>passive sonar classification</subject><subject>Reproducibility of results</subject><subject>Reviews</subject><subject>Sensors</subject><subject>Sonar</subject><subject>Sonar navigation</subject><subject>Statistical analysis</subject><subject>Surveys</subject><subject>Target recognition</subject><subject>underwater acoustic target recognition</subject><subject>Underwater acoustics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQFaWBBje_IDkIerarj11J25vZJm3AtCVOzkKrHa1lktVGkl3y7ytnQ8kcZobhvTfDPIQuKVlRSpqv67a93m5XjLBqxStFpFIf0DmjolnymouP7_pP6CKlPSmhyqiW5-j5lzn6wWQ_DjjvAH-HKe_SN7zGbXiaIuxgTP4IeHuIR3jBwRUETHgDJo4njgsR_zHpFfMw9hD_mgwRr204pOwtvjdxgIzvwIZh9NmH8TM6c-YxwcVbXaCHm-v79udy8_vHbbveLC1TTV7yhtVge6dUpSorQQjOuZU1SC5rK_q-MxIY68D1QnbEVBYaIgyjXdcJ03V8gW5n3T6YvZ6ifzLxRQfj9esgxEGbWE58BC2hcbWtmeDKVYY7o_qSoS4qrmrK4xboy6w1xfB8gJT1PhziWM7XnDLGGkEJLSg-o2wMKUVw_7dSok9W6dkqfbJKv1lVWFczywPAO4akQpTl_wBs0ZF4</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Muller, Nils</creator><creator>Reermann, Jens</creator><creator>Meisen, Tobias</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0000-6627-7019</orcidid><orcidid>https://orcid.org/0000-0002-0467-0947</orcidid><orcidid>https://orcid.org/0000-0002-1969-559X</orcidid></search><sort><creationdate>2024</creationdate><title>Navigating the Depths: A Comprehensive Survey of Deep Learning for Passive Underwater Acoustic Target Recognition</title><author>Muller, Nils ; Reermann, Jens ; Meisen, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-3925ecdf88484c7e66333c75e7375c6ddba7e22befd67b0a4ce906a21bbb6abb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep learning</topic><topic>passive sonar classification</topic><topic>Reproducibility of results</topic><topic>Reviews</topic><topic>Sensors</topic><topic>Sonar</topic><topic>Sonar navigation</topic><topic>Statistical analysis</topic><topic>Surveys</topic><topic>Target recognition</topic><topic>underwater acoustic target recognition</topic><topic>Underwater acoustics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muller, Nils</creatorcontrib><creatorcontrib>Reermann, Jens</creatorcontrib><creatorcontrib>Meisen, Tobias</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muller, Nils</au><au>Reermann, Jens</au><au>Meisen, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Navigating the Depths: A Comprehensive Survey of Deep Learning for Passive Underwater Acoustic Target Recognition</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>154092</spage><epage>154118</epage><pages>154092-154118</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The field of deep learning is a rapidly developing research area with numerous applications across multiple domains. Sonar (SOund Navigation And Ranging) processing has traditionally been a field of statistical analysis. However, in the past ten to fifteen years, the rapid growth of deep learning has challenged classical approaches with modern deep learning-based methods. This survey provides a systematic overview of the Underwater Acoustic Target Recognition (UATR) domain within the area of deep learning. The objective is to highlight popular design choices and evaluate the commonalities and differences of the investigated techniques in relation to the selected architectures and pre-processing methods. Furthermore, this survey examines the state of UATR literature through the identification of prominent conferences and journals which points new researchers in directions where to allocate UATR related publications. Additionally, popular datasets and available benchmarks are identified and analysed for complexity coverage. This work targets researchers new to the field as well as experienced researchers that want to get a broader overview. Nonetheless, experienced sonar engineers with a strong background within classical analysis also benefit from this survey.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3480788</doi><tpages>27</tpages><orcidid>https://orcid.org/0009-0000-6627-7019</orcidid><orcidid>https://orcid.org/0000-0002-0467-0947</orcidid><orcidid>https://orcid.org/0000-0002-1969-559X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.154092-154118
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10716649
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Deep learning
passive sonar classification
Reproducibility of results
Reviews
Sensors
Sonar
Sonar navigation
Statistical analysis
Surveys
Target recognition
underwater acoustic target recognition
Underwater acoustics
title Navigating the Depths: A Comprehensive Survey of Deep Learning for Passive Underwater Acoustic Target Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T02%3A33%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Navigating%20the%20Depths:%20A%20Comprehensive%20Survey%20of%20Deep%20Learning%20for%20Passive%20Underwater%20Acoustic%20Target%20Recognition&rft.jtitle=IEEE%20access&rft.au=Muller,%20Nils&rft.date=2024&rft.volume=12&rft.spage=154092&rft.epage=154118&rft.pages=154092-154118&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3480788&rft_dat=%3Cproquest_ieee_%3E3122296101%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3122296101&rft_id=info:pmid/&rft_ieee_id=10716649&rft_doaj_id=oai_doaj_org_article_7e9f5c52638f4a3fa8da3fe5bb3f4935&rfr_iscdi=true