An Alternating Direction Method of Multipliers Algorithm for 1-D Magnetotelluric Anisotropic Inversion Using Fourier Series Expansion

In this study, we present a novel approach for 1-D magnetotelluric (MT) anisotropy inversion that aims to improve the reliability and efficiency of the inversion process. First, to reduce the number of inversion variables, we used the Fourier series (FS) expansion to approximate the resistivity dist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-11
Hauptverfasser: Liu, Zhengguang, Pan, Kejia, Zhang, Liang, Yao, Hongbo, Fu, Kang, Tang, Rusang, Lu, Guangyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Liu, Zhengguang
Pan, Kejia
Zhang, Liang
Yao, Hongbo
Fu, Kang
Tang, Rusang
Lu, Guangyin
description In this study, we present a novel approach for 1-D magnetotelluric (MT) anisotropy inversion that aims to improve the reliability and efficiency of the inversion process. First, to reduce the number of inversion variables, we used the Fourier series (FS) expansion to approximate the resistivity distribution of the underground media. Consequently, the inversion variables are identified as the coefficients of the FS expansion, which are typically fewer in number than the layers. In addition, the boundary restriction of the recovered resistivity model is applied to further reduce the solution space and obtain a physically meaningful result. The objective function is formulated on the basis of the Tikhonov regularization method with an L_{1} norm, which facilitates accurate imaging for models with abrupt changes in resistivity. Then, we employ a new alternating direction method of multipliers (ADMM) algorithm to minimize the augmented Lagrangian function of the original objective function, thus deriving a set of resistivity parameters that can effectively illustrate the observation data. This process involves alternating updates of the inversion variables and two auxiliary variables during each iteration. Finally, our FS-based ADMM inversion method with the L_{1} norm, when subjected to extensive tests with synthetic and field datasets, has proved its superiority in terms of robustness, reliability, and efficiency in reconstructing subsurface resistivity distributions, compared to the conventional Gauss-Newton (GN) algorithm with the L_{2} norm. This offers the geoelectromagnetic community a novel and effective tool for the interpretation of MT data observed in anisotropic media.
doi_str_mv 10.1109/TGRS.2024.3479415
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10716415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10716415</ieee_id><sourcerecordid>10_1109_TGRS_2024_3479415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-1bdc2c0cd5c56896dadcbc95407c86c39f206f9cc8894f030a0e1700bd32e0993</originalsourceid><addsrcrecordid>eNpNkEtOwzAURS0EEqWwACQG3kDKc-J8PIz6o1IjJNqOo9R5aY1SO7JdBAtg3yRqB4zule5ncAh5ZjBhDMTrdvmxmYQQ8knEU8FZfENGLI6zABLOb8kImEiCMBPhPXlw7hOA8ZilI_Kba5q3Hq2uvNIHOlMWpVdG0wL90dTUNLQ4t151rULr-u7BWOWPJ9oYS1kwo0V10OiNx7Y9WyVprpUz3pqu9yv91Y-Gt50b3hemr6ClG-zF0fl3V-khfiR3TdU6fLrqmOwW8-30LVi_L1fTfB1IxjMfsH0tQwmyjmWcZCKpq1rupYg5pDJLZCSaEJJGSJllgjcQQQXIUoB9HYUIQkRjwi6_0hrnLDZlZ9Wpsj8lg3LgWA4cy4FjeeXYb14uG4WI__opS4b4Dw88chc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Alternating Direction Method of Multipliers Algorithm for 1-D Magnetotelluric Anisotropic Inversion Using Fourier Series Expansion</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Zhengguang ; Pan, Kejia ; Zhang, Liang ; Yao, Hongbo ; Fu, Kang ; Tang, Rusang ; Lu, Guangyin</creator><creatorcontrib>Liu, Zhengguang ; Pan, Kejia ; Zhang, Liang ; Yao, Hongbo ; Fu, Kang ; Tang, Rusang ; Lu, Guangyin</creatorcontrib><description><![CDATA[In this study, we present a novel approach for 1-D magnetotelluric (MT) anisotropy inversion that aims to improve the reliability and efficiency of the inversion process. First, to reduce the number of inversion variables, we used the Fourier series (FS) expansion to approximate the resistivity distribution of the underground media. Consequently, the inversion variables are identified as the coefficients of the FS expansion, which are typically fewer in number than the layers. In addition, the boundary restriction of the recovered resistivity model is applied to further reduce the solution space and obtain a physically meaningful result. The objective function is formulated on the basis of the Tikhonov regularization method with an <inline-formula> <tex-math notation="LaTeX">L_{1} </tex-math></inline-formula> norm, which facilitates accurate imaging for models with abrupt changes in resistivity. Then, we employ a new alternating direction method of multipliers (ADMM) algorithm to minimize the augmented Lagrangian function of the original objective function, thus deriving a set of resistivity parameters that can effectively illustrate the observation data. This process involves alternating updates of the inversion variables and two auxiliary variables during each iteration. Finally, our FS-based ADMM inversion method with the <inline-formula> <tex-math notation="LaTeX">L_{1} </tex-math></inline-formula> norm, when subjected to extensive tests with synthetic and field datasets, has proved its superiority in terms of robustness, reliability, and efficiency in reconstructing subsurface resistivity distributions, compared to the conventional Gauss-Newton (GN) algorithm with the <inline-formula> <tex-math notation="LaTeX">L_{2} </tex-math></inline-formula> norm. This offers the geoelectromagnetic community a novel and effective tool for the interpretation of MT data observed in anisotropic media.]]></description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3479415</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>IEEE</publisher><subject>1-D anisotropy inversion ; alternating direction method of multipliers (ADMM) ; Anisotropic ; Anisotropic magnetoresistance ; Computational modeling ; Conductivity ; Convex functions ; Data models ; Fourier series ; Fourier series (FS) ; Linear programming ; magnetotelluric (MT) ; Mathematical models ; Media</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1862-3743 ; 0009-0003-7021-7985 ; 0000-0001-6340-5142 ; 0000-0001-5768-7972 ; 0009-0005-7560-1796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10716415$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10716415$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Zhengguang</creatorcontrib><creatorcontrib>Pan, Kejia</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Yao, Hongbo</creatorcontrib><creatorcontrib>Fu, Kang</creatorcontrib><creatorcontrib>Tang, Rusang</creatorcontrib><creatorcontrib>Lu, Guangyin</creatorcontrib><title>An Alternating Direction Method of Multipliers Algorithm for 1-D Magnetotelluric Anisotropic Inversion Using Fourier Series Expansion</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description><![CDATA[In this study, we present a novel approach for 1-D magnetotelluric (MT) anisotropy inversion that aims to improve the reliability and efficiency of the inversion process. First, to reduce the number of inversion variables, we used the Fourier series (FS) expansion to approximate the resistivity distribution of the underground media. Consequently, the inversion variables are identified as the coefficients of the FS expansion, which are typically fewer in number than the layers. In addition, the boundary restriction of the recovered resistivity model is applied to further reduce the solution space and obtain a physically meaningful result. The objective function is formulated on the basis of the Tikhonov regularization method with an <inline-formula> <tex-math notation="LaTeX">L_{1} </tex-math></inline-formula> norm, which facilitates accurate imaging for models with abrupt changes in resistivity. Then, we employ a new alternating direction method of multipliers (ADMM) algorithm to minimize the augmented Lagrangian function of the original objective function, thus deriving a set of resistivity parameters that can effectively illustrate the observation data. This process involves alternating updates of the inversion variables and two auxiliary variables during each iteration. Finally, our FS-based ADMM inversion method with the <inline-formula> <tex-math notation="LaTeX">L_{1} </tex-math></inline-formula> norm, when subjected to extensive tests with synthetic and field datasets, has proved its superiority in terms of robustness, reliability, and efficiency in reconstructing subsurface resistivity distributions, compared to the conventional Gauss-Newton (GN) algorithm with the <inline-formula> <tex-math notation="LaTeX">L_{2} </tex-math></inline-formula> norm. This offers the geoelectromagnetic community a novel and effective tool for the interpretation of MT data observed in anisotropic media.]]></description><subject>1-D anisotropy inversion</subject><subject>alternating direction method of multipliers (ADMM)</subject><subject>Anisotropic</subject><subject>Anisotropic magnetoresistance</subject><subject>Computational modeling</subject><subject>Conductivity</subject><subject>Convex functions</subject><subject>Data models</subject><subject>Fourier series</subject><subject>Fourier series (FS)</subject><subject>Linear programming</subject><subject>magnetotelluric (MT)</subject><subject>Mathematical models</subject><subject>Media</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtOwzAURS0EEqWwACQG3kDKc-J8PIz6o1IjJNqOo9R5aY1SO7JdBAtg3yRqB4zule5ncAh5ZjBhDMTrdvmxmYQQ8knEU8FZfENGLI6zABLOb8kImEiCMBPhPXlw7hOA8ZilI_Kba5q3Hq2uvNIHOlMWpVdG0wL90dTUNLQ4t151rULr-u7BWOWPJ9oYS1kwo0V10OiNx7Y9WyVprpUz3pqu9yv91Y-Gt50b3hemr6ClG-zF0fl3V-khfiR3TdU6fLrqmOwW8-30LVi_L1fTfB1IxjMfsH0tQwmyjmWcZCKpq1rupYg5pDJLZCSaEJJGSJllgjcQQQXIUoB9HYUIQkRjwi6_0hrnLDZlZ9Wpsj8lg3LgWA4cy4FjeeXYb14uG4WI__opS4b4Dw88chc</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Liu, Zhengguang</creator><creator>Pan, Kejia</creator><creator>Zhang, Liang</creator><creator>Yao, Hongbo</creator><creator>Fu, Kang</creator><creator>Tang, Rusang</creator><creator>Lu, Guangyin</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1862-3743</orcidid><orcidid>https://orcid.org/0009-0003-7021-7985</orcidid><orcidid>https://orcid.org/0000-0001-6340-5142</orcidid><orcidid>https://orcid.org/0000-0001-5768-7972</orcidid><orcidid>https://orcid.org/0009-0005-7560-1796</orcidid></search><sort><creationdate>2024</creationdate><title>An Alternating Direction Method of Multipliers Algorithm for 1-D Magnetotelluric Anisotropic Inversion Using Fourier Series Expansion</title><author>Liu, Zhengguang ; Pan, Kejia ; Zhang, Liang ; Yao, Hongbo ; Fu, Kang ; Tang, Rusang ; Lu, Guangyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-1bdc2c0cd5c56896dadcbc95407c86c39f206f9cc8894f030a0e1700bd32e0993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>1-D anisotropy inversion</topic><topic>alternating direction method of multipliers (ADMM)</topic><topic>Anisotropic</topic><topic>Anisotropic magnetoresistance</topic><topic>Computational modeling</topic><topic>Conductivity</topic><topic>Convex functions</topic><topic>Data models</topic><topic>Fourier series</topic><topic>Fourier series (FS)</topic><topic>Linear programming</topic><topic>magnetotelluric (MT)</topic><topic>Mathematical models</topic><topic>Media</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhengguang</creatorcontrib><creatorcontrib>Pan, Kejia</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Yao, Hongbo</creatorcontrib><creatorcontrib>Fu, Kang</creatorcontrib><creatorcontrib>Tang, Rusang</creatorcontrib><creatorcontrib>Lu, Guangyin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Zhengguang</au><au>Pan, Kejia</au><au>Zhang, Liang</au><au>Yao, Hongbo</au><au>Fu, Kang</au><au>Tang, Rusang</au><au>Lu, Guangyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Alternating Direction Method of Multipliers Algorithm for 1-D Magnetotelluric Anisotropic Inversion Using Fourier Series Expansion</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract><![CDATA[In this study, we present a novel approach for 1-D magnetotelluric (MT) anisotropy inversion that aims to improve the reliability and efficiency of the inversion process. First, to reduce the number of inversion variables, we used the Fourier series (FS) expansion to approximate the resistivity distribution of the underground media. Consequently, the inversion variables are identified as the coefficients of the FS expansion, which are typically fewer in number than the layers. In addition, the boundary restriction of the recovered resistivity model is applied to further reduce the solution space and obtain a physically meaningful result. The objective function is formulated on the basis of the Tikhonov regularization method with an <inline-formula> <tex-math notation="LaTeX">L_{1} </tex-math></inline-formula> norm, which facilitates accurate imaging for models with abrupt changes in resistivity. Then, we employ a new alternating direction method of multipliers (ADMM) algorithm to minimize the augmented Lagrangian function of the original objective function, thus deriving a set of resistivity parameters that can effectively illustrate the observation data. This process involves alternating updates of the inversion variables and two auxiliary variables during each iteration. Finally, our FS-based ADMM inversion method with the <inline-formula> <tex-math notation="LaTeX">L_{1} </tex-math></inline-formula> norm, when subjected to extensive tests with synthetic and field datasets, has proved its superiority in terms of robustness, reliability, and efficiency in reconstructing subsurface resistivity distributions, compared to the conventional Gauss-Newton (GN) algorithm with the <inline-formula> <tex-math notation="LaTeX">L_{2} </tex-math></inline-formula> norm. This offers the geoelectromagnetic community a novel and effective tool for the interpretation of MT data observed in anisotropic media.]]></abstract><pub>IEEE</pub><doi>10.1109/TGRS.2024.3479415</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1862-3743</orcidid><orcidid>https://orcid.org/0009-0003-7021-7985</orcidid><orcidid>https://orcid.org/0000-0001-6340-5142</orcidid><orcidid>https://orcid.org/0000-0001-5768-7972</orcidid><orcidid>https://orcid.org/0009-0005-7560-1796</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-11
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_10716415
source IEEE Electronic Library (IEL)
subjects 1-D anisotropy inversion
alternating direction method of multipliers (ADMM)
Anisotropic
Anisotropic magnetoresistance
Computational modeling
Conductivity
Convex functions
Data models
Fourier series
Fourier series (FS)
Linear programming
magnetotelluric (MT)
Mathematical models
Media
title An Alternating Direction Method of Multipliers Algorithm for 1-D Magnetotelluric Anisotropic Inversion Using Fourier Series Expansion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Alternating%20Direction%20Method%20of%20Multipliers%20Algorithm%20for%201-D%20Magnetotelluric%20Anisotropic%20Inversion%20Using%20Fourier%20Series%20Expansion&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Liu,%20Zhengguang&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3479415&rft_dat=%3Ccrossref_RIE%3E10_1109_TGRS_2024_3479415%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10716415&rfr_iscdi=true