A New Family of Graph Representation Matrices: Application to Graph and Signal Classification
Most natural matrices that incorporate information about a graph are the adjacency and the Laplacian matrices. These algebraic representations govern the fundamental concepts and tools in graph signal processing even though they reveal information in different ways. Furthermore, in the context of sp...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2024, Vol.31, p.2935-2939 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2939 |
---|---|
container_issue | |
container_start_page | 2935 |
container_title | IEEE signal processing letters |
container_volume | 31 |
creator | Averty, T. Boudraa, A. O. Dare-Emzivat, D. |
description | Most natural matrices that incorporate information about a graph are the adjacency and the Laplacian matrices. These algebraic representations govern the fundamental concepts and tools in graph signal processing even though they reveal information in different ways. Furthermore, in the context of spectral graph classification, the problem of cospectrality may arise and it is not well handled by these matrices. Thus, the question of finding the best graph representation matrix still stands. In this letter, a new family of representations that well captures information about graphs and also allows to find the standard representation matrices, is introduced. This family of unified matrices well captures the graph information and extends the recent works of the literature. Two properties are proven, namely its positive semidefiniteness and the monotonicity of their eigenvalues. Reported experimental results of spectral graph classification highlight the potential and the added value of this new family of matrices, and evidence that the best representation depends upon the structure of the underlying graph. |
doi_str_mv | 10.1109/LSP.2024.3479918 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10715665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10715665</ieee_id><sourcerecordid>3120655692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-640005a361ac3c1750ad6b88a1dff96ca56d4e71442b43b9afabd540a2d085493</originalsourceid><addsrcrecordid>eNpNkM9LwzAUx4MoOKd3Dx4Cnjtf2iRNvI3hpjB_4PQo4bVNNaO2NemQ_fd2tAdP7_H4fB9fPoRcMpgxBvpmvXmZxRDzWcJTrZk6IhMmhIriRLLjfocUIq1BnZKzELYAoJgSE_Ixp0_2ly7x21V72pR05bH9oq-29TbYusPONTV9xM673IZbOm_byuXDtWtGGuuCbtxnjRVdVBiCK0fknJyUWAV7Mc4peV_evS3uo_Xz6mExX0c5S0UXSd73Edg3xTw5nAALmSmFrChLLXMUsuA2ZZzHGU8yjSVmheCAcQFKcJ1MyfXwt_XNz86Gzmybne_7BJOwGKQQUsc9BQOV-yYEb0vTeveNfm8YmINE00s0B4lmlNhHroaIs9b-w1MmpBTJH0pnbSE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120655692</pqid></control><display><type>article</type><title>A New Family of Graph Representation Matrices: Application to Graph and Signal Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Averty, T. ; Boudraa, A. O. ; Dare-Emzivat, D.</creator><creatorcontrib>Averty, T. ; Boudraa, A. O. ; Dare-Emzivat, D.</creatorcontrib><description>Most natural matrices that incorporate information about a graph are the adjacency and the Laplacian matrices. These algebraic representations govern the fundamental concepts and tools in graph signal processing even though they reveal information in different ways. Furthermore, in the context of spectral graph classification, the problem of cospectrality may arise and it is not well handled by these matrices. Thus, the question of finding the best graph representation matrix still stands. In this letter, a new family of representations that well captures information about graphs and also allows to find the standard representation matrices, is introduced. This family of unified matrices well captures the graph information and extends the recent works of the literature. Two properties are proven, namely its positive semidefiniteness and the monotonicity of their eigenvalues. Reported experimental results of spectral graph classification highlight the potential and the added value of this new family of matrices, and evidence that the best representation depends upon the structure of the underlying graph.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2024.3479918</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adjacency matrix ; Eigenvalues ; Eigenvalues and eigenfunctions ; Filtering ; Fourier transforms ; graph representation ; Graph representations ; graph signal processing ; Graph theory ; Graphical representations ; Kernel ; Laplace equations ; Laplacian matrix ; Matrix algebra ; Signal classification ; Signal processing ; Social networking (online) ; spectral graph theory ; Support vector machines ; Visualization</subject><ispartof>IEEE signal processing letters, 2024, Vol.31, p.2935-2939</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-640005a361ac3c1750ad6b88a1dff96ca56d4e71442b43b9afabd540a2d085493</cites><orcidid>0009-0009-4297-865X ; 0000-0001-6717-6965</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10715665$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4022,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10715665$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Averty, T.</creatorcontrib><creatorcontrib>Boudraa, A. O.</creatorcontrib><creatorcontrib>Dare-Emzivat, D.</creatorcontrib><title>A New Family of Graph Representation Matrices: Application to Graph and Signal Classification</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Most natural matrices that incorporate information about a graph are the adjacency and the Laplacian matrices. These algebraic representations govern the fundamental concepts and tools in graph signal processing even though they reveal information in different ways. Furthermore, in the context of spectral graph classification, the problem of cospectrality may arise and it is not well handled by these matrices. Thus, the question of finding the best graph representation matrix still stands. In this letter, a new family of representations that well captures information about graphs and also allows to find the standard representation matrices, is introduced. This family of unified matrices well captures the graph information and extends the recent works of the literature. Two properties are proven, namely its positive semidefiniteness and the monotonicity of their eigenvalues. Reported experimental results of spectral graph classification highlight the potential and the added value of this new family of matrices, and evidence that the best representation depends upon the structure of the underlying graph.</description><subject>Adjacency matrix</subject><subject>Eigenvalues</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Filtering</subject><subject>Fourier transforms</subject><subject>graph representation</subject><subject>Graph representations</subject><subject>graph signal processing</subject><subject>Graph theory</subject><subject>Graphical representations</subject><subject>Kernel</subject><subject>Laplace equations</subject><subject>Laplacian matrix</subject><subject>Matrix algebra</subject><subject>Signal classification</subject><subject>Signal processing</subject><subject>Social networking (online)</subject><subject>spectral graph theory</subject><subject>Support vector machines</subject><subject>Visualization</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LwzAUx4MoOKd3Dx4Cnjtf2iRNvI3hpjB_4PQo4bVNNaO2NemQ_fd2tAdP7_H4fB9fPoRcMpgxBvpmvXmZxRDzWcJTrZk6IhMmhIriRLLjfocUIq1BnZKzELYAoJgSE_Ixp0_2ly7x21V72pR05bH9oq-29TbYusPONTV9xM673IZbOm_byuXDtWtGGuuCbtxnjRVdVBiCK0fknJyUWAV7Mc4peV_evS3uo_Xz6mExX0c5S0UXSd73Edg3xTw5nAALmSmFrChLLXMUsuA2ZZzHGU8yjSVmheCAcQFKcJ1MyfXwt_XNz86Gzmybne_7BJOwGKQQUsc9BQOV-yYEb0vTeveNfm8YmINE00s0B4lmlNhHroaIs9b-w1MmpBTJH0pnbSE</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Averty, T.</creator><creator>Boudraa, A. O.</creator><creator>Dare-Emzivat, D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0009-4297-865X</orcidid><orcidid>https://orcid.org/0000-0001-6717-6965</orcidid></search><sort><creationdate>2024</creationdate><title>A New Family of Graph Representation Matrices: Application to Graph and Signal Classification</title><author>Averty, T. ; Boudraa, A. O. ; Dare-Emzivat, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-640005a361ac3c1750ad6b88a1dff96ca56d4e71442b43b9afabd540a2d085493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adjacency matrix</topic><topic>Eigenvalues</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Filtering</topic><topic>Fourier transforms</topic><topic>graph representation</topic><topic>Graph representations</topic><topic>graph signal processing</topic><topic>Graph theory</topic><topic>Graphical representations</topic><topic>Kernel</topic><topic>Laplace equations</topic><topic>Laplacian matrix</topic><topic>Matrix algebra</topic><topic>Signal classification</topic><topic>Signal processing</topic><topic>Social networking (online)</topic><topic>spectral graph theory</topic><topic>Support vector machines</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Averty, T.</creatorcontrib><creatorcontrib>Boudraa, A. O.</creatorcontrib><creatorcontrib>Dare-Emzivat, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Averty, T.</au><au>Boudraa, A. O.</au><au>Dare-Emzivat, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Family of Graph Representation Matrices: Application to Graph and Signal Classification</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2024</date><risdate>2024</risdate><volume>31</volume><spage>2935</spage><epage>2939</epage><pages>2935-2939</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Most natural matrices that incorporate information about a graph are the adjacency and the Laplacian matrices. These algebraic representations govern the fundamental concepts and tools in graph signal processing even though they reveal information in different ways. Furthermore, in the context of spectral graph classification, the problem of cospectrality may arise and it is not well handled by these matrices. Thus, the question of finding the best graph representation matrix still stands. In this letter, a new family of representations that well captures information about graphs and also allows to find the standard representation matrices, is introduced. This family of unified matrices well captures the graph information and extends the recent works of the literature. Two properties are proven, namely its positive semidefiniteness and the monotonicity of their eigenvalues. Reported experimental results of spectral graph classification highlight the potential and the added value of this new family of matrices, and evidence that the best representation depends upon the structure of the underlying graph.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2024.3479918</doi><tpages>5</tpages><orcidid>https://orcid.org/0009-0009-4297-865X</orcidid><orcidid>https://orcid.org/0000-0001-6717-6965</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2024, Vol.31, p.2935-2939 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_ieee_primary_10715665 |
source | IEEE Electronic Library (IEL) |
subjects | Adjacency matrix Eigenvalues Eigenvalues and eigenfunctions Filtering Fourier transforms graph representation Graph representations graph signal processing Graph theory Graphical representations Kernel Laplace equations Laplacian matrix Matrix algebra Signal classification Signal processing Social networking (online) spectral graph theory Support vector machines Visualization |
title | A New Family of Graph Representation Matrices: Application to Graph and Signal Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A14%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Family%20of%20Graph%20Representation%20Matrices:%20Application%20to%20Graph%20and%20Signal%20Classification&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Averty,%20T.&rft.date=2024&rft.volume=31&rft.spage=2935&rft.epage=2939&rft.pages=2935-2939&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2024.3479918&rft_dat=%3Cproquest_RIE%3E3120655692%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120655692&rft_id=info:pmid/&rft_ieee_id=10715665&rfr_iscdi=true |