A New Family of Graph Representation Matrices: Application to Graph and Signal Classification

Most natural matrices that incorporate information about a graph are the adjacency and the Laplacian matrices. These algebraic representations govern the fundamental concepts and tools in graph signal processing even though they reveal information in different ways. Furthermore, in the context of sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2024, Vol.31, p.2935-2939
Hauptverfasser: Averty, T., Boudraa, A. O., Dare-Emzivat, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2939
container_issue
container_start_page 2935
container_title IEEE signal processing letters
container_volume 31
creator Averty, T.
Boudraa, A. O.
Dare-Emzivat, D.
description Most natural matrices that incorporate information about a graph are the adjacency and the Laplacian matrices. These algebraic representations govern the fundamental concepts and tools in graph signal processing even though they reveal information in different ways. Furthermore, in the context of spectral graph classification, the problem of cospectrality may arise and it is not well handled by these matrices. Thus, the question of finding the best graph representation matrix still stands. In this letter, a new family of representations that well captures information about graphs and also allows to find the standard representation matrices, is introduced. This family of unified matrices well captures the graph information and extends the recent works of the literature. Two properties are proven, namely its positive semidefiniteness and the monotonicity of their eigenvalues. Reported experimental results of spectral graph classification highlight the potential and the added value of this new family of matrices, and evidence that the best representation depends upon the structure of the underlying graph.
doi_str_mv 10.1109/LSP.2024.3479918
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10715665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10715665</ieee_id><sourcerecordid>3120655692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-640005a361ac3c1750ad6b88a1dff96ca56d4e71442b43b9afabd540a2d085493</originalsourceid><addsrcrecordid>eNpNkM9LwzAUx4MoOKd3Dx4Cnjtf2iRNvI3hpjB_4PQo4bVNNaO2NemQ_fd2tAdP7_H4fB9fPoRcMpgxBvpmvXmZxRDzWcJTrZk6IhMmhIriRLLjfocUIq1BnZKzELYAoJgSE_Ixp0_2ly7x21V72pR05bH9oq-29TbYusPONTV9xM673IZbOm_byuXDtWtGGuuCbtxnjRVdVBiCK0fknJyUWAV7Mc4peV_evS3uo_Xz6mExX0c5S0UXSd73Edg3xTw5nAALmSmFrChLLXMUsuA2ZZzHGU8yjSVmheCAcQFKcJ1MyfXwt_XNz86Gzmybne_7BJOwGKQQUsc9BQOV-yYEb0vTeveNfm8YmINE00s0B4lmlNhHroaIs9b-w1MmpBTJH0pnbSE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120655692</pqid></control><display><type>article</type><title>A New Family of Graph Representation Matrices: Application to Graph and Signal Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Averty, T. ; Boudraa, A. O. ; Dare-Emzivat, D.</creator><creatorcontrib>Averty, T. ; Boudraa, A. O. ; Dare-Emzivat, D.</creatorcontrib><description>Most natural matrices that incorporate information about a graph are the adjacency and the Laplacian matrices. These algebraic representations govern the fundamental concepts and tools in graph signal processing even though they reveal information in different ways. Furthermore, in the context of spectral graph classification, the problem of cospectrality may arise and it is not well handled by these matrices. Thus, the question of finding the best graph representation matrix still stands. In this letter, a new family of representations that well captures information about graphs and also allows to find the standard representation matrices, is introduced. This family of unified matrices well captures the graph information and extends the recent works of the literature. Two properties are proven, namely its positive semidefiniteness and the monotonicity of their eigenvalues. Reported experimental results of spectral graph classification highlight the potential and the added value of this new family of matrices, and evidence that the best representation depends upon the structure of the underlying graph.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2024.3479918</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adjacency matrix ; Eigenvalues ; Eigenvalues and eigenfunctions ; Filtering ; Fourier transforms ; graph representation ; Graph representations ; graph signal processing ; Graph theory ; Graphical representations ; Kernel ; Laplace equations ; Laplacian matrix ; Matrix algebra ; Signal classification ; Signal processing ; Social networking (online) ; spectral graph theory ; Support vector machines ; Visualization</subject><ispartof>IEEE signal processing letters, 2024, Vol.31, p.2935-2939</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-640005a361ac3c1750ad6b88a1dff96ca56d4e71442b43b9afabd540a2d085493</cites><orcidid>0009-0009-4297-865X ; 0000-0001-6717-6965</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10715665$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4022,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10715665$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Averty, T.</creatorcontrib><creatorcontrib>Boudraa, A. O.</creatorcontrib><creatorcontrib>Dare-Emzivat, D.</creatorcontrib><title>A New Family of Graph Representation Matrices: Application to Graph and Signal Classification</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Most natural matrices that incorporate information about a graph are the adjacency and the Laplacian matrices. These algebraic representations govern the fundamental concepts and tools in graph signal processing even though they reveal information in different ways. Furthermore, in the context of spectral graph classification, the problem of cospectrality may arise and it is not well handled by these matrices. Thus, the question of finding the best graph representation matrix still stands. In this letter, a new family of representations that well captures information about graphs and also allows to find the standard representation matrices, is introduced. This family of unified matrices well captures the graph information and extends the recent works of the literature. Two properties are proven, namely its positive semidefiniteness and the monotonicity of their eigenvalues. Reported experimental results of spectral graph classification highlight the potential and the added value of this new family of matrices, and evidence that the best representation depends upon the structure of the underlying graph.</description><subject>Adjacency matrix</subject><subject>Eigenvalues</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Filtering</subject><subject>Fourier transforms</subject><subject>graph representation</subject><subject>Graph representations</subject><subject>graph signal processing</subject><subject>Graph theory</subject><subject>Graphical representations</subject><subject>Kernel</subject><subject>Laplace equations</subject><subject>Laplacian matrix</subject><subject>Matrix algebra</subject><subject>Signal classification</subject><subject>Signal processing</subject><subject>Social networking (online)</subject><subject>spectral graph theory</subject><subject>Support vector machines</subject><subject>Visualization</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LwzAUx4MoOKd3Dx4Cnjtf2iRNvI3hpjB_4PQo4bVNNaO2NemQ_fd2tAdP7_H4fB9fPoRcMpgxBvpmvXmZxRDzWcJTrZk6IhMmhIriRLLjfocUIq1BnZKzELYAoJgSE_Ixp0_2ly7x21V72pR05bH9oq-29TbYusPONTV9xM673IZbOm_byuXDtWtGGuuCbtxnjRVdVBiCK0fknJyUWAV7Mc4peV_evS3uo_Xz6mExX0c5S0UXSd73Edg3xTw5nAALmSmFrChLLXMUsuA2ZZzHGU8yjSVmheCAcQFKcJ1MyfXwt_XNz86Gzmybne_7BJOwGKQQUsc9BQOV-yYEb0vTeveNfm8YmINE00s0B4lmlNhHroaIs9b-w1MmpBTJH0pnbSE</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Averty, T.</creator><creator>Boudraa, A. O.</creator><creator>Dare-Emzivat, D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0009-4297-865X</orcidid><orcidid>https://orcid.org/0000-0001-6717-6965</orcidid></search><sort><creationdate>2024</creationdate><title>A New Family of Graph Representation Matrices: Application to Graph and Signal Classification</title><author>Averty, T. ; Boudraa, A. O. ; Dare-Emzivat, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-640005a361ac3c1750ad6b88a1dff96ca56d4e71442b43b9afabd540a2d085493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adjacency matrix</topic><topic>Eigenvalues</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Filtering</topic><topic>Fourier transforms</topic><topic>graph representation</topic><topic>Graph representations</topic><topic>graph signal processing</topic><topic>Graph theory</topic><topic>Graphical representations</topic><topic>Kernel</topic><topic>Laplace equations</topic><topic>Laplacian matrix</topic><topic>Matrix algebra</topic><topic>Signal classification</topic><topic>Signal processing</topic><topic>Social networking (online)</topic><topic>spectral graph theory</topic><topic>Support vector machines</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Averty, T.</creatorcontrib><creatorcontrib>Boudraa, A. O.</creatorcontrib><creatorcontrib>Dare-Emzivat, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Averty, T.</au><au>Boudraa, A. O.</au><au>Dare-Emzivat, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Family of Graph Representation Matrices: Application to Graph and Signal Classification</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2024</date><risdate>2024</risdate><volume>31</volume><spage>2935</spage><epage>2939</epage><pages>2935-2939</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Most natural matrices that incorporate information about a graph are the adjacency and the Laplacian matrices. These algebraic representations govern the fundamental concepts and tools in graph signal processing even though they reveal information in different ways. Furthermore, in the context of spectral graph classification, the problem of cospectrality may arise and it is not well handled by these matrices. Thus, the question of finding the best graph representation matrix still stands. In this letter, a new family of representations that well captures information about graphs and also allows to find the standard representation matrices, is introduced. This family of unified matrices well captures the graph information and extends the recent works of the literature. Two properties are proven, namely its positive semidefiniteness and the monotonicity of their eigenvalues. Reported experimental results of spectral graph classification highlight the potential and the added value of this new family of matrices, and evidence that the best representation depends upon the structure of the underlying graph.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2024.3479918</doi><tpages>5</tpages><orcidid>https://orcid.org/0009-0009-4297-865X</orcidid><orcidid>https://orcid.org/0000-0001-6717-6965</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2024, Vol.31, p.2935-2939
issn 1070-9908
1558-2361
language eng
recordid cdi_ieee_primary_10715665
source IEEE Electronic Library (IEL)
subjects Adjacency matrix
Eigenvalues
Eigenvalues and eigenfunctions
Filtering
Fourier transforms
graph representation
Graph representations
graph signal processing
Graph theory
Graphical representations
Kernel
Laplace equations
Laplacian matrix
Matrix algebra
Signal classification
Signal processing
Social networking (online)
spectral graph theory
Support vector machines
Visualization
title A New Family of Graph Representation Matrices: Application to Graph and Signal Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A14%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Family%20of%20Graph%20Representation%20Matrices:%20Application%20to%20Graph%20and%20Signal%20Classification&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Averty,%20T.&rft.date=2024&rft.volume=31&rft.spage=2935&rft.epage=2939&rft.pages=2935-2939&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2024.3479918&rft_dat=%3Cproquest_RIE%3E3120655692%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120655692&rft_id=info:pmid/&rft_ieee_id=10715665&rfr_iscdi=true