Egret: Reinforcement Mechanism for Sequential Computation Offloading in Edge Computing

As an emerging computing paradigm, edge computing offers computational resources closer to the data sources, helping to improve the service quality of many real-time applications. A crucial problem is designing a rational pricing mechanism to maximize the revenue of the edge computing service provid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on services computing 2024-11, Vol.17 (6), p.3541-3554
Hauptverfasser: Peng, Haosong, Zhan, Yufeng, Zhai, Di-Hua, Zhang, Xiaopu, Xia, Yuanqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3554
container_issue 6
container_start_page 3541
container_title IEEE transactions on services computing
container_volume 17
creator Peng, Haosong
Zhan, Yufeng
Zhai, Di-Hua
Zhang, Xiaopu
Xia, Yuanqing
description As an emerging computing paradigm, edge computing offers computational resources closer to the data sources, helping to improve the service quality of many real-time applications. A crucial problem is designing a rational pricing mechanism to maximize the revenue of the edge computing service provider (ECSP). However, prior works have considerable limitations: clients are static and are required to disclose their preferences, which is impractical. To address this issue, we propose a novel sequential computation offloading mechanism, where the ECSP posts prices of computational resources with different configurations to clients in turn. Clients independently choose which computational resources to rent and how to offload based on their prices. Then Egret, a deep reinforcement learning-based approach that achieves maximum revenue, is proposed. Egret determines the optimal price and visiting orders online without infringing on clients' privacy. Experimental results show that the revenue of ECSP in Egret is only 1.29% lower than Oracle and 23.43% better than the state-of-the-art when the client arrives dynamically.
doi_str_mv 10.1109/TSC.2024.3478826
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10713973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10713973</ieee_id><sourcerecordid>10_1109_TSC_2024_3478826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1046-55255922d0b233549bc287f1d3ac341646e4dd159b983206921440816081c65d3</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqGwMzD4D6TYd7Zjs6GofEhFlWhhjRzbCUZNUpJ04N-Tqh0YTic97703PITccjbnnJn7zTqfAwMxR5FpDeqMJIAZpAyYOCcJN2hSjpm4JFfD8M2YAq1NQj4XdR_GB_oeYlt1vQtNaEf6FtyXbePQ0InRdfjZTzTaLc27Zrcf7Ri7lq6qattZH9uaxpYufB1O8USuyUVlt0O4Oe0Z-XhabPKXdLl6fs0fl6njTKhUSpDSAHhWAqIUpnSgs4p7tA4FV0IF4T2XpjQagSkDXAimuZrGKelxRtjxr-u7YehDVez62Nj-t-CsOHgpJi_FwUtx8jJV7o6VGEL4d55xNBniH4ntXZc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Egret: Reinforcement Mechanism for Sequential Computation Offloading in Edge Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Peng, Haosong ; Zhan, Yufeng ; Zhai, Di-Hua ; Zhang, Xiaopu ; Xia, Yuanqing</creator><creatorcontrib>Peng, Haosong ; Zhan, Yufeng ; Zhai, Di-Hua ; Zhang, Xiaopu ; Xia, Yuanqing</creatorcontrib><description>As an emerging computing paradigm, edge computing offers computational resources closer to the data sources, helping to improve the service quality of many real-time applications. A crucial problem is designing a rational pricing mechanism to maximize the revenue of the edge computing service provider (ECSP). However, prior works have considerable limitations: clients are static and are required to disclose their preferences, which is impractical. To address this issue, we propose a novel sequential computation offloading mechanism, where the ECSP posts prices of computational resources with different configurations to clients in turn. Clients independently choose which computational resources to rent and how to offload based on their prices. Then Egret, a deep reinforcement learning-based approach that achieves maximum revenue, is proposed. Egret determines the optimal price and visiting orders online without infringing on clients' privacy. Experimental results show that the revenue of ECSP in Egret is only 1.29% lower than Oracle and 23.43% better than the state-of-the-art when the client arrives dynamically.</description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2024.3478826</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bandwidth ; Computation offloading ; Computational modeling ; Costs ; Deep reinforcement learning ; edge computing ; Games ; Heuristic algorithms ; Multi-access edge computing ; Pricing ; Privacy ; sequential pricing ; Servers</subject><ispartof>IEEE transactions on services computing, 2024-11, Vol.17 (6), p.3541-3554</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1046-55255922d0b233549bc287f1d3ac341646e4dd159b983206921440816081c65d3</cites><orcidid>0000-0002-4528-1489 ; 0000-0002-5977-4911 ; 0000-0003-2105-0990 ; 0000-0001-8653-8626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10713973$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10713973$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Peng, Haosong</creatorcontrib><creatorcontrib>Zhan, Yufeng</creatorcontrib><creatorcontrib>Zhai, Di-Hua</creatorcontrib><creatorcontrib>Zhang, Xiaopu</creatorcontrib><creatorcontrib>Xia, Yuanqing</creatorcontrib><title>Egret: Reinforcement Mechanism for Sequential Computation Offloading in Edge Computing</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description>As an emerging computing paradigm, edge computing offers computational resources closer to the data sources, helping to improve the service quality of many real-time applications. A crucial problem is designing a rational pricing mechanism to maximize the revenue of the edge computing service provider (ECSP). However, prior works have considerable limitations: clients are static and are required to disclose their preferences, which is impractical. To address this issue, we propose a novel sequential computation offloading mechanism, where the ECSP posts prices of computational resources with different configurations to clients in turn. Clients independently choose which computational resources to rent and how to offload based on their prices. Then Egret, a deep reinforcement learning-based approach that achieves maximum revenue, is proposed. Egret determines the optimal price and visiting orders online without infringing on clients' privacy. Experimental results show that the revenue of ECSP in Egret is only 1.29% lower than Oracle and 23.43% better than the state-of-the-art when the client arrives dynamically.</description><subject>Bandwidth</subject><subject>Computation offloading</subject><subject>Computational modeling</subject><subject>Costs</subject><subject>Deep reinforcement learning</subject><subject>edge computing</subject><subject>Games</subject><subject>Heuristic algorithms</subject><subject>Multi-access edge computing</subject><subject>Pricing</subject><subject>Privacy</subject><subject>sequential pricing</subject><subject>Servers</subject><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqGwMzD4D6TYd7Zjs6GofEhFlWhhjRzbCUZNUpJ04N-Tqh0YTic97703PITccjbnnJn7zTqfAwMxR5FpDeqMJIAZpAyYOCcJN2hSjpm4JFfD8M2YAq1NQj4XdR_GB_oeYlt1vQtNaEf6FtyXbePQ0InRdfjZTzTaLc27Zrcf7Ri7lq6qattZH9uaxpYufB1O8USuyUVlt0O4Oe0Z-XhabPKXdLl6fs0fl6njTKhUSpDSAHhWAqIUpnSgs4p7tA4FV0IF4T2XpjQagSkDXAimuZrGKelxRtjxr-u7YehDVez62Nj-t-CsOHgpJi_FwUtx8jJV7o6VGEL4d55xNBniH4ntXZc</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Peng, Haosong</creator><creator>Zhan, Yufeng</creator><creator>Zhai, Di-Hua</creator><creator>Zhang, Xiaopu</creator><creator>Xia, Yuanqing</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4528-1489</orcidid><orcidid>https://orcid.org/0000-0002-5977-4911</orcidid><orcidid>https://orcid.org/0000-0003-2105-0990</orcidid><orcidid>https://orcid.org/0000-0001-8653-8626</orcidid></search><sort><creationdate>202411</creationdate><title>Egret: Reinforcement Mechanism for Sequential Computation Offloading in Edge Computing</title><author>Peng, Haosong ; Zhan, Yufeng ; Zhai, Di-Hua ; Zhang, Xiaopu ; Xia, Yuanqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1046-55255922d0b233549bc287f1d3ac341646e4dd159b983206921440816081c65d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bandwidth</topic><topic>Computation offloading</topic><topic>Computational modeling</topic><topic>Costs</topic><topic>Deep reinforcement learning</topic><topic>edge computing</topic><topic>Games</topic><topic>Heuristic algorithms</topic><topic>Multi-access edge computing</topic><topic>Pricing</topic><topic>Privacy</topic><topic>sequential pricing</topic><topic>Servers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Haosong</creatorcontrib><creatorcontrib>Zhan, Yufeng</creatorcontrib><creatorcontrib>Zhai, Di-Hua</creatorcontrib><creatorcontrib>Zhang, Xiaopu</creatorcontrib><creatorcontrib>Xia, Yuanqing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peng, Haosong</au><au>Zhan, Yufeng</au><au>Zhai, Di-Hua</au><au>Zhang, Xiaopu</au><au>Xia, Yuanqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Egret: Reinforcement Mechanism for Sequential Computation Offloading in Edge Computing</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2024-11</date><risdate>2024</risdate><volume>17</volume><issue>6</issue><spage>3541</spage><epage>3554</epage><pages>3541-3554</pages><issn>1939-1374</issn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract>As an emerging computing paradigm, edge computing offers computational resources closer to the data sources, helping to improve the service quality of many real-time applications. A crucial problem is designing a rational pricing mechanism to maximize the revenue of the edge computing service provider (ECSP). However, prior works have considerable limitations: clients are static and are required to disclose their preferences, which is impractical. To address this issue, we propose a novel sequential computation offloading mechanism, where the ECSP posts prices of computational resources with different configurations to clients in turn. Clients independently choose which computational resources to rent and how to offload based on their prices. Then Egret, a deep reinforcement learning-based approach that achieves maximum revenue, is proposed. Egret determines the optimal price and visiting orders online without infringing on clients' privacy. Experimental results show that the revenue of ECSP in Egret is only 1.29% lower than Oracle and 23.43% better than the state-of-the-art when the client arrives dynamically.</abstract><pub>IEEE</pub><doi>10.1109/TSC.2024.3478826</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4528-1489</orcidid><orcidid>https://orcid.org/0000-0002-5977-4911</orcidid><orcidid>https://orcid.org/0000-0003-2105-0990</orcidid><orcidid>https://orcid.org/0000-0001-8653-8626</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1939-1374
ispartof IEEE transactions on services computing, 2024-11, Vol.17 (6), p.3541-3554
issn 1939-1374
2372-0204
language eng
recordid cdi_ieee_primary_10713973
source IEEE Electronic Library (IEL)
subjects Bandwidth
Computation offloading
Computational modeling
Costs
Deep reinforcement learning
edge computing
Games
Heuristic algorithms
Multi-access edge computing
Pricing
Privacy
sequential pricing
Servers
title Egret: Reinforcement Mechanism for Sequential Computation Offloading in Edge Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A31%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Egret:%20Reinforcement%20Mechanism%20for%20Sequential%20Computation%20Offloading%20in%20Edge%20Computing&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=Peng,%20Haosong&rft.date=2024-11&rft.volume=17&rft.issue=6&rft.spage=3541&rft.epage=3554&rft.pages=3541-3554&rft.issn=1939-1374&rft.eissn=2372-0204&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2024.3478826&rft_dat=%3Ccrossref_RIE%3E10_1109_TSC_2024_3478826%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10713973&rfr_iscdi=true