Egret: Reinforcement Mechanism for Sequential Computation Offloading in Edge Computing
As an emerging computing paradigm, edge computing offers computational resources closer to the data sources, helping to improve the service quality of many real-time applications. A crucial problem is designing a rational pricing mechanism to maximize the revenue of the edge computing service provid...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on services computing 2024-11, Vol.17 (6), p.3541-3554 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3554 |
---|---|
container_issue | 6 |
container_start_page | 3541 |
container_title | IEEE transactions on services computing |
container_volume | 17 |
creator | Peng, Haosong Zhan, Yufeng Zhai, Di-Hua Zhang, Xiaopu Xia, Yuanqing |
description | As an emerging computing paradigm, edge computing offers computational resources closer to the data sources, helping to improve the service quality of many real-time applications. A crucial problem is designing a rational pricing mechanism to maximize the revenue of the edge computing service provider (ECSP). However, prior works have considerable limitations: clients are static and are required to disclose their preferences, which is impractical. To address this issue, we propose a novel sequential computation offloading mechanism, where the ECSP posts prices of computational resources with different configurations to clients in turn. Clients independently choose which computational resources to rent and how to offload based on their prices. Then Egret, a deep reinforcement learning-based approach that achieves maximum revenue, is proposed. Egret determines the optimal price and visiting orders online without infringing on clients' privacy. Experimental results show that the revenue of ECSP in Egret is only 1.29% lower than Oracle and 23.43% better than the state-of-the-art when the client arrives dynamically. |
doi_str_mv | 10.1109/TSC.2024.3478826 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10713973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10713973</ieee_id><sourcerecordid>10_1109_TSC_2024_3478826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1046-55255922d0b233549bc287f1d3ac341646e4dd159b983206921440816081c65d3</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqGwMzD4D6TYd7Zjs6GofEhFlWhhjRzbCUZNUpJ04N-Tqh0YTic97703PITccjbnnJn7zTqfAwMxR5FpDeqMJIAZpAyYOCcJN2hSjpm4JFfD8M2YAq1NQj4XdR_GB_oeYlt1vQtNaEf6FtyXbePQ0InRdfjZTzTaLc27Zrcf7Ri7lq6qattZH9uaxpYufB1O8USuyUVlt0O4Oe0Z-XhabPKXdLl6fs0fl6njTKhUSpDSAHhWAqIUpnSgs4p7tA4FV0IF4T2XpjQagSkDXAimuZrGKelxRtjxr-u7YehDVez62Nj-t-CsOHgpJi_FwUtx8jJV7o6VGEL4d55xNBniH4ntXZc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Egret: Reinforcement Mechanism for Sequential Computation Offloading in Edge Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Peng, Haosong ; Zhan, Yufeng ; Zhai, Di-Hua ; Zhang, Xiaopu ; Xia, Yuanqing</creator><creatorcontrib>Peng, Haosong ; Zhan, Yufeng ; Zhai, Di-Hua ; Zhang, Xiaopu ; Xia, Yuanqing</creatorcontrib><description>As an emerging computing paradigm, edge computing offers computational resources closer to the data sources, helping to improve the service quality of many real-time applications. A crucial problem is designing a rational pricing mechanism to maximize the revenue of the edge computing service provider (ECSP). However, prior works have considerable limitations: clients are static and are required to disclose their preferences, which is impractical. To address this issue, we propose a novel sequential computation offloading mechanism, where the ECSP posts prices of computational resources with different configurations to clients in turn. Clients independently choose which computational resources to rent and how to offload based on their prices. Then Egret, a deep reinforcement learning-based approach that achieves maximum revenue, is proposed. Egret determines the optimal price and visiting orders online without infringing on clients' privacy. Experimental results show that the revenue of ECSP in Egret is only 1.29% lower than Oracle and 23.43% better than the state-of-the-art when the client arrives dynamically.</description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2024.3478826</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bandwidth ; Computation offloading ; Computational modeling ; Costs ; Deep reinforcement learning ; edge computing ; Games ; Heuristic algorithms ; Multi-access edge computing ; Pricing ; Privacy ; sequential pricing ; Servers</subject><ispartof>IEEE transactions on services computing, 2024-11, Vol.17 (6), p.3541-3554</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1046-55255922d0b233549bc287f1d3ac341646e4dd159b983206921440816081c65d3</cites><orcidid>0000-0002-4528-1489 ; 0000-0002-5977-4911 ; 0000-0003-2105-0990 ; 0000-0001-8653-8626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10713973$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10713973$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Peng, Haosong</creatorcontrib><creatorcontrib>Zhan, Yufeng</creatorcontrib><creatorcontrib>Zhai, Di-Hua</creatorcontrib><creatorcontrib>Zhang, Xiaopu</creatorcontrib><creatorcontrib>Xia, Yuanqing</creatorcontrib><title>Egret: Reinforcement Mechanism for Sequential Computation Offloading in Edge Computing</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description>As an emerging computing paradigm, edge computing offers computational resources closer to the data sources, helping to improve the service quality of many real-time applications. A crucial problem is designing a rational pricing mechanism to maximize the revenue of the edge computing service provider (ECSP). However, prior works have considerable limitations: clients are static and are required to disclose their preferences, which is impractical. To address this issue, we propose a novel sequential computation offloading mechanism, where the ECSP posts prices of computational resources with different configurations to clients in turn. Clients independently choose which computational resources to rent and how to offload based on their prices. Then Egret, a deep reinforcement learning-based approach that achieves maximum revenue, is proposed. Egret determines the optimal price and visiting orders online without infringing on clients' privacy. Experimental results show that the revenue of ECSP in Egret is only 1.29% lower than Oracle and 23.43% better than the state-of-the-art when the client arrives dynamically.</description><subject>Bandwidth</subject><subject>Computation offloading</subject><subject>Computational modeling</subject><subject>Costs</subject><subject>Deep reinforcement learning</subject><subject>edge computing</subject><subject>Games</subject><subject>Heuristic algorithms</subject><subject>Multi-access edge computing</subject><subject>Pricing</subject><subject>Privacy</subject><subject>sequential pricing</subject><subject>Servers</subject><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqGwMzD4D6TYd7Zjs6GofEhFlWhhjRzbCUZNUpJ04N-Tqh0YTic97703PITccjbnnJn7zTqfAwMxR5FpDeqMJIAZpAyYOCcJN2hSjpm4JFfD8M2YAq1NQj4XdR_GB_oeYlt1vQtNaEf6FtyXbePQ0InRdfjZTzTaLc27Zrcf7Ri7lq6qattZH9uaxpYufB1O8USuyUVlt0O4Oe0Z-XhabPKXdLl6fs0fl6njTKhUSpDSAHhWAqIUpnSgs4p7tA4FV0IF4T2XpjQagSkDXAimuZrGKelxRtjxr-u7YehDVez62Nj-t-CsOHgpJi_FwUtx8jJV7o6VGEL4d55xNBniH4ntXZc</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Peng, Haosong</creator><creator>Zhan, Yufeng</creator><creator>Zhai, Di-Hua</creator><creator>Zhang, Xiaopu</creator><creator>Xia, Yuanqing</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4528-1489</orcidid><orcidid>https://orcid.org/0000-0002-5977-4911</orcidid><orcidid>https://orcid.org/0000-0003-2105-0990</orcidid><orcidid>https://orcid.org/0000-0001-8653-8626</orcidid></search><sort><creationdate>202411</creationdate><title>Egret: Reinforcement Mechanism for Sequential Computation Offloading in Edge Computing</title><author>Peng, Haosong ; Zhan, Yufeng ; Zhai, Di-Hua ; Zhang, Xiaopu ; Xia, Yuanqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1046-55255922d0b233549bc287f1d3ac341646e4dd159b983206921440816081c65d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bandwidth</topic><topic>Computation offloading</topic><topic>Computational modeling</topic><topic>Costs</topic><topic>Deep reinforcement learning</topic><topic>edge computing</topic><topic>Games</topic><topic>Heuristic algorithms</topic><topic>Multi-access edge computing</topic><topic>Pricing</topic><topic>Privacy</topic><topic>sequential pricing</topic><topic>Servers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Haosong</creatorcontrib><creatorcontrib>Zhan, Yufeng</creatorcontrib><creatorcontrib>Zhai, Di-Hua</creatorcontrib><creatorcontrib>Zhang, Xiaopu</creatorcontrib><creatorcontrib>Xia, Yuanqing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peng, Haosong</au><au>Zhan, Yufeng</au><au>Zhai, Di-Hua</au><au>Zhang, Xiaopu</au><au>Xia, Yuanqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Egret: Reinforcement Mechanism for Sequential Computation Offloading in Edge Computing</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2024-11</date><risdate>2024</risdate><volume>17</volume><issue>6</issue><spage>3541</spage><epage>3554</epage><pages>3541-3554</pages><issn>1939-1374</issn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract>As an emerging computing paradigm, edge computing offers computational resources closer to the data sources, helping to improve the service quality of many real-time applications. A crucial problem is designing a rational pricing mechanism to maximize the revenue of the edge computing service provider (ECSP). However, prior works have considerable limitations: clients are static and are required to disclose their preferences, which is impractical. To address this issue, we propose a novel sequential computation offloading mechanism, where the ECSP posts prices of computational resources with different configurations to clients in turn. Clients independently choose which computational resources to rent and how to offload based on their prices. Then Egret, a deep reinforcement learning-based approach that achieves maximum revenue, is proposed. Egret determines the optimal price and visiting orders online without infringing on clients' privacy. Experimental results show that the revenue of ECSP in Egret is only 1.29% lower than Oracle and 23.43% better than the state-of-the-art when the client arrives dynamically.</abstract><pub>IEEE</pub><doi>10.1109/TSC.2024.3478826</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4528-1489</orcidid><orcidid>https://orcid.org/0000-0002-5977-4911</orcidid><orcidid>https://orcid.org/0000-0003-2105-0990</orcidid><orcidid>https://orcid.org/0000-0001-8653-8626</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1939-1374 |
ispartof | IEEE transactions on services computing, 2024-11, Vol.17 (6), p.3541-3554 |
issn | 1939-1374 2372-0204 |
language | eng |
recordid | cdi_ieee_primary_10713973 |
source | IEEE Electronic Library (IEL) |
subjects | Bandwidth Computation offloading Computational modeling Costs Deep reinforcement learning edge computing Games Heuristic algorithms Multi-access edge computing Pricing Privacy sequential pricing Servers |
title | Egret: Reinforcement Mechanism for Sequential Computation Offloading in Edge Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A31%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Egret:%20Reinforcement%20Mechanism%20for%20Sequential%20Computation%20Offloading%20in%20Edge%20Computing&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=Peng,%20Haosong&rft.date=2024-11&rft.volume=17&rft.issue=6&rft.spage=3541&rft.epage=3554&rft.pages=3541-3554&rft.issn=1939-1374&rft.eissn=2372-0204&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2024.3478826&rft_dat=%3Ccrossref_RIE%3E10_1109_TSC_2024_3478826%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10713973&rfr_iscdi=true |