Density-Aware Cloud Removal of Remote Sensing Imagery Using a Global-Local Fusion Transformer

Cloud cover poses a significant challenge in remote sensing image processing, affecting the extraction and analysis of terrestrial features. Despite advancements in multitemporal cloud removal methods, single-image declouding remains crucial for emergency response and disaster management, where rapi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-11
Hauptverfasser: Rui, Quan, He, Shiyuan, Li, Tianyu, Wang, Guoqing, Ruan, Ningjuan, Mei, Lin, Yang, Yang, Shen, Heng Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Rui, Quan
He, Shiyuan
Li, Tianyu
Wang, Guoqing
Ruan, Ningjuan
Mei, Lin
Yang, Yang
Shen, Heng Tao
description Cloud cover poses a significant challenge in remote sensing image processing, affecting the extraction and analysis of terrestrial features. Despite advancements in multitemporal cloud removal methods, single-image declouding remains crucial for emergency response and disaster management, where rapid acquisition of cloud-free imagery is essential. Traditional approaches often rely on synthetic aperture radar (SAR) or cloud masks as guidance for cloud removal, introducing additional complexities and dependencies on extensive data. To address these limitations, we propose a density-aware cloud removal using a global-local fusion Transformer (DCR-GLFT), which leverages density information as guidance and does not rely on extensive data. Specifically, our method employs density labels to guide the cloud removal process through two primary stages: cloud density estimation and density-guided cloud removal. A cloud density classifier is proposed in the first stage, trained with roughly estimated ground truth, to generate density labels for guiding subsequent removal processes. The second stage integrates cloud density information with cloud-ground image features using a Transformer-based network, enabling precise and nuanced cloud removal while preserving underlying surface details through the integration of both global and local features. The proposed method achieved the state-of-the-art results (peak signal-to-noise ratio (PSNR) of 28.93 and structural similarity index measure (SSIM) of 0.84) on the renowned cloud-removal dataset SEN12MS-CR, even without utilizing SAR data for guidance. This accomplishment highlights its significant advancement in the single-image cloud removal task. Our code will be made available at https://github.com/ruiquan1214/DCR-GLFT.git .
doi_str_mv 10.1109/TGRS.2024.3477739
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10713444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10713444</ieee_id><sourcerecordid>10_1109_TGRS_2024_3477739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c634-fa8b56e96a85dd86ebba60205270f0972510b0e8cc0e3399a9edc5f93fc9c9b03</originalsourceid><addsrcrecordid>eNpNkM1Kw0AUhQdRsFYfQHAxL5B65y_JLEu1tVAQ2riUMJncKZEkIzOt0re3abtwdc-F75zFR8gjgwljoJ-LxXoz4cDlRMgsy4S-IiOmVJ5AKuU1GQHTacJzzW_JXYxfAEwqlo3I5wv2sdkdkumvCUhnrd_XdI2d_zEt9e4Ud0g3A9Vv6bIzWwwH-nH6DF20vjJtsvL2iM_3sfE9LYLpo_Ohw3BPbpxpIz5c7pgU89di9pas3hfL2XSV2FTIxJm8Uinq1OSqrvMUq8qkwEHxDBzojCsGFWBuLaAQWhuNtVVOC2e11RWIMWHnWRt8jAFd-R2azoRDyaAc9JSDnnLQU170HDtP506DiP_4jAkppfgDcfxiKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Density-Aware Cloud Removal of Remote Sensing Imagery Using a Global-Local Fusion Transformer</title><source>IEEE/IET Electronic Library</source><creator>Rui, Quan ; He, Shiyuan ; Li, Tianyu ; Wang, Guoqing ; Ruan, Ningjuan ; Mei, Lin ; Yang, Yang ; Shen, Heng Tao</creator><creatorcontrib>Rui, Quan ; He, Shiyuan ; Li, Tianyu ; Wang, Guoqing ; Ruan, Ningjuan ; Mei, Lin ; Yang, Yang ; Shen, Heng Tao</creatorcontrib><description>Cloud cover poses a significant challenge in remote sensing image processing, affecting the extraction and analysis of terrestrial features. Despite advancements in multitemporal cloud removal methods, single-image declouding remains crucial for emergency response and disaster management, where rapid acquisition of cloud-free imagery is essential. Traditional approaches often rely on synthetic aperture radar (SAR) or cloud masks as guidance for cloud removal, introducing additional complexities and dependencies on extensive data. To address these limitations, we propose a density-aware cloud removal using a global-local fusion Transformer (DCR-GLFT), which leverages density information as guidance and does not rely on extensive data. Specifically, our method employs density labels to guide the cloud removal process through two primary stages: cloud density estimation and density-guided cloud removal. A cloud density classifier is proposed in the first stage, trained with roughly estimated ground truth, to generate density labels for guiding subsequent removal processes. The second stage integrates cloud density information with cloud-ground image features using a Transformer-based network, enabling precise and nuanced cloud removal while preserving underlying surface details through the integration of both global and local features. The proposed method achieved the state-of-the-art results (peak signal-to-noise ratio (PSNR) of 28.93 and structural similarity index measure (SSIM) of 0.84) on the renowned cloud-removal dataset SEN12MS-CR, even without utilizing SAR data for guidance. This accomplishment highlights its significant advancement in the single-image cloud removal task. Our code will be made available at https://github.com/ruiquan1214/DCR-GLFT.git .</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3477739</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cloud removal ; Clouds ; Deep learning ; density label ; Feature extraction ; Generative adversarial networks ; global-local fusion Transformer (GLFT) ; Image reconstruction ; Image restoration ; Remote sensing ; Surface treatment ; Synthetic aperture radar ; Transformers</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5069-1493 ; 0009-0004-4473-3166 ; 0000-0002-2999-2088 ; 0000-0002-3938-5994 ; 0000-0002-5070-4511 ; 0009-0005-6287-6969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10713444$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10713444$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rui, Quan</creatorcontrib><creatorcontrib>He, Shiyuan</creatorcontrib><creatorcontrib>Li, Tianyu</creatorcontrib><creatorcontrib>Wang, Guoqing</creatorcontrib><creatorcontrib>Ruan, Ningjuan</creatorcontrib><creatorcontrib>Mei, Lin</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Shen, Heng Tao</creatorcontrib><title>Density-Aware Cloud Removal of Remote Sensing Imagery Using a Global-Local Fusion Transformer</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Cloud cover poses a significant challenge in remote sensing image processing, affecting the extraction and analysis of terrestrial features. Despite advancements in multitemporal cloud removal methods, single-image declouding remains crucial for emergency response and disaster management, where rapid acquisition of cloud-free imagery is essential. Traditional approaches often rely on synthetic aperture radar (SAR) or cloud masks as guidance for cloud removal, introducing additional complexities and dependencies on extensive data. To address these limitations, we propose a density-aware cloud removal using a global-local fusion Transformer (DCR-GLFT), which leverages density information as guidance and does not rely on extensive data. Specifically, our method employs density labels to guide the cloud removal process through two primary stages: cloud density estimation and density-guided cloud removal. A cloud density classifier is proposed in the first stage, trained with roughly estimated ground truth, to generate density labels for guiding subsequent removal processes. The second stage integrates cloud density information with cloud-ground image features using a Transformer-based network, enabling precise and nuanced cloud removal while preserving underlying surface details through the integration of both global and local features. The proposed method achieved the state-of-the-art results (peak signal-to-noise ratio (PSNR) of 28.93 and structural similarity index measure (SSIM) of 0.84) on the renowned cloud-removal dataset SEN12MS-CR, even without utilizing SAR data for guidance. This accomplishment highlights its significant advancement in the single-image cloud removal task. Our code will be made available at https://github.com/ruiquan1214/DCR-GLFT.git .</description><subject>Cloud removal</subject><subject>Clouds</subject><subject>Deep learning</subject><subject>density label</subject><subject>Feature extraction</subject><subject>Generative adversarial networks</subject><subject>global-local fusion Transformer (GLFT)</subject><subject>Image reconstruction</subject><subject>Image restoration</subject><subject>Remote sensing</subject><subject>Surface treatment</subject><subject>Synthetic aperture radar</subject><subject>Transformers</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Kw0AUhQdRsFYfQHAxL5B65y_JLEu1tVAQ2riUMJncKZEkIzOt0re3abtwdc-F75zFR8gjgwljoJ-LxXoz4cDlRMgsy4S-IiOmVJ5AKuU1GQHTacJzzW_JXYxfAEwqlo3I5wv2sdkdkumvCUhnrd_XdI2d_zEt9e4Ud0g3A9Vv6bIzWwwH-nH6DF20vjJtsvL2iM_3sfE9LYLpo_Ohw3BPbpxpIz5c7pgU89di9pas3hfL2XSV2FTIxJm8Uinq1OSqrvMUq8qkwEHxDBzojCsGFWBuLaAQWhuNtVVOC2e11RWIMWHnWRt8jAFd-R2azoRDyaAc9JSDnnLQU170HDtP506DiP_4jAkppfgDcfxiKg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Rui, Quan</creator><creator>He, Shiyuan</creator><creator>Li, Tianyu</creator><creator>Wang, Guoqing</creator><creator>Ruan, Ningjuan</creator><creator>Mei, Lin</creator><creator>Yang, Yang</creator><creator>Shen, Heng Tao</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5069-1493</orcidid><orcidid>https://orcid.org/0009-0004-4473-3166</orcidid><orcidid>https://orcid.org/0000-0002-2999-2088</orcidid><orcidid>https://orcid.org/0000-0002-3938-5994</orcidid><orcidid>https://orcid.org/0000-0002-5070-4511</orcidid><orcidid>https://orcid.org/0009-0005-6287-6969</orcidid></search><sort><creationdate>2024</creationdate><title>Density-Aware Cloud Removal of Remote Sensing Imagery Using a Global-Local Fusion Transformer</title><author>Rui, Quan ; He, Shiyuan ; Li, Tianyu ; Wang, Guoqing ; Ruan, Ningjuan ; Mei, Lin ; Yang, Yang ; Shen, Heng Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c634-fa8b56e96a85dd86ebba60205270f0972510b0e8cc0e3399a9edc5f93fc9c9b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cloud removal</topic><topic>Clouds</topic><topic>Deep learning</topic><topic>density label</topic><topic>Feature extraction</topic><topic>Generative adversarial networks</topic><topic>global-local fusion Transformer (GLFT)</topic><topic>Image reconstruction</topic><topic>Image restoration</topic><topic>Remote sensing</topic><topic>Surface treatment</topic><topic>Synthetic aperture radar</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rui, Quan</creatorcontrib><creatorcontrib>He, Shiyuan</creatorcontrib><creatorcontrib>Li, Tianyu</creatorcontrib><creatorcontrib>Wang, Guoqing</creatorcontrib><creatorcontrib>Ruan, Ningjuan</creatorcontrib><creatorcontrib>Mei, Lin</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Shen, Heng Tao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rui, Quan</au><au>He, Shiyuan</au><au>Li, Tianyu</au><au>Wang, Guoqing</au><au>Ruan, Ningjuan</au><au>Mei, Lin</au><au>Yang, Yang</au><au>Shen, Heng Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Density-Aware Cloud Removal of Remote Sensing Imagery Using a Global-Local Fusion Transformer</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Cloud cover poses a significant challenge in remote sensing image processing, affecting the extraction and analysis of terrestrial features. Despite advancements in multitemporal cloud removal methods, single-image declouding remains crucial for emergency response and disaster management, where rapid acquisition of cloud-free imagery is essential. Traditional approaches often rely on synthetic aperture radar (SAR) or cloud masks as guidance for cloud removal, introducing additional complexities and dependencies on extensive data. To address these limitations, we propose a density-aware cloud removal using a global-local fusion Transformer (DCR-GLFT), which leverages density information as guidance and does not rely on extensive data. Specifically, our method employs density labels to guide the cloud removal process through two primary stages: cloud density estimation and density-guided cloud removal. A cloud density classifier is proposed in the first stage, trained with roughly estimated ground truth, to generate density labels for guiding subsequent removal processes. The second stage integrates cloud density information with cloud-ground image features using a Transformer-based network, enabling precise and nuanced cloud removal while preserving underlying surface details through the integration of both global and local features. The proposed method achieved the state-of-the-art results (peak signal-to-noise ratio (PSNR) of 28.93 and structural similarity index measure (SSIM) of 0.84) on the renowned cloud-removal dataset SEN12MS-CR, even without utilizing SAR data for guidance. This accomplishment highlights its significant advancement in the single-image cloud removal task. Our code will be made available at https://github.com/ruiquan1214/DCR-GLFT.git .</abstract><pub>IEEE</pub><doi>10.1109/TGRS.2024.3477739</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5069-1493</orcidid><orcidid>https://orcid.org/0009-0004-4473-3166</orcidid><orcidid>https://orcid.org/0000-0002-2999-2088</orcidid><orcidid>https://orcid.org/0000-0002-3938-5994</orcidid><orcidid>https://orcid.org/0000-0002-5070-4511</orcidid><orcidid>https://orcid.org/0009-0005-6287-6969</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-11
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_10713444
source IEEE/IET Electronic Library
subjects Cloud removal
Clouds
Deep learning
density label
Feature extraction
Generative adversarial networks
global-local fusion Transformer (GLFT)
Image reconstruction
Image restoration
Remote sensing
Surface treatment
Synthetic aperture radar
Transformers
title Density-Aware Cloud Removal of Remote Sensing Imagery Using a Global-Local Fusion Transformer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A14%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Density-Aware%20Cloud%20Removal%20of%20Remote%20Sensing%20Imagery%20Using%20a%20Global-Local%20Fusion%20Transformer&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Rui,%20Quan&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3477739&rft_dat=%3Ccrossref_RIE%3E10_1109_TGRS_2024_3477739%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10713444&rfr_iscdi=true