Dynamic Error Modeling and Compensation of a Scanning Probe on CMM

The raising demand for high-efficiency inspection in industrial manufacturing has significantly increased the required measurement speed, resulting in extra dynamic errors during measurement. Although the dynamic error modeling and compensation for the coordinate measuring machine (CMM) have been wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-9
Hauptverfasser: Shen, Yijun, Zhang, Yaqi, Yan, Lifang, Huang, Nuodi, Zhang, Xu, Zhang, Yang, Zhu, Limin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 73
creator Shen, Yijun
Zhang, Yaqi
Yan, Lifang
Huang, Nuodi
Zhang, Xu
Zhang, Yang
Zhu, Limin
description The raising demand for high-efficiency inspection in industrial manufacturing has significantly increased the required measurement speed, resulting in extra dynamic errors during measurement. Although the dynamic error modeling and compensation for the coordinate measuring machine (CMM) have been widely investigated, the influence of the dynamic error on the scanning probe system has attracted few attention. In this article, the dynamic performance of the scanning probe is analyzed, and the dynamic error is modeled as the constant time delay in the response of a second-order system subjected to the ramp excitation. The delay-inclusive probe model is proposed to compensate the dynamic error in the probe signal, and the corresponding calibration method is given to identify the constant time delay, which only requires to probe 25 points on a sphere. Three sets of probing and scanning experiments are conducted to compare the accuracy of the proposed method against the existing methods in high-speed measurement. Although the probing accuracy with the existing calibration methods is reduced to several tens of micrometers in high-speed probing, the proposed method maintains microlevel accuracy, which is basically identical to the accuracy in low speed. Moreover, the calibration time for the proposed method is only 17.4% of the Renishaw commercial calibration method.
doi_str_mv 10.1109/TIM.2024.3476532
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10711962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10711962</ieee_id><sourcerecordid>10_1109_TIM_2024_3476532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-1a0dcdbee1744fc827d49bd7d42fee95aaec52cb0d4ca9984272bbe9ec6d1b393</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqGwMzD4DyTYjj_qEUKBSo1AosyRPy4oqLEru0v_PYnageVOuvd9bngQuqekopTox-26rRhhvKq5kqJmF6igQqhSS8kuUUEIXZaaC3mNbnL-JYQoyVWBnl-OwYyDw6uUYsJt9LAbwg82weMmjnsI2RyGGHDsscFfzoQwx58pWsDTuWnbW3TVm12Gu_NeoO_X1bZ5Lzcfb-vmaVM6ytWhpIZ45y0AVZz3bsmU59r6abIeQAtjwAnmLPHcGa2XnClmLWhw0lNb63qByOmvSzHnBH23T8No0rGjpJsddJODbnbQnR1MyMMJGQDgX11RqiWr_wCemlh3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamic Error Modeling and Compensation of a Scanning Probe on CMM</title><source>IEEE Xplore</source><creator>Shen, Yijun ; Zhang, Yaqi ; Yan, Lifang ; Huang, Nuodi ; Zhang, Xu ; Zhang, Yang ; Zhu, Limin</creator><creatorcontrib>Shen, Yijun ; Zhang, Yaqi ; Yan, Lifang ; Huang, Nuodi ; Zhang, Xu ; Zhang, Yang ; Zhu, Limin</creatorcontrib><description>The raising demand for high-efficiency inspection in industrial manufacturing has significantly increased the required measurement speed, resulting in extra dynamic errors during measurement. Although the dynamic error modeling and compensation for the coordinate measuring machine (CMM) have been widely investigated, the influence of the dynamic error on the scanning probe system has attracted few attention. In this article, the dynamic performance of the scanning probe is analyzed, and the dynamic error is modeled as the constant time delay in the response of a second-order system subjected to the ramp excitation. The delay-inclusive probe model is proposed to compensate the dynamic error in the probe signal, and the corresponding calibration method is given to identify the constant time delay, which only requires to probe 25 points on a sphere. Three sets of probing and scanning experiments are conducted to compare the accuracy of the proposed method against the existing methods in high-speed measurement. Although the probing accuracy with the existing calibration methods is reduced to several tens of micrometers in high-speed probing, the proposed method maintains microlevel accuracy, which is basically identical to the accuracy in low speed. Moreover, the calibration time for the proposed method is only 17.4% of the Renishaw commercial calibration method.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3476532</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Calibration ; Contact measurement ; Coordinate measuring machines ; coordinate measuring machines (CMMs) ; Delay effects ; Delays ; dynamic error ; Inspection ; Manufacturing ; Mathematical models ; Measurement uncertainty ; probe calibration ; Probes ; scanning probe</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-9</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c147t-1a0dcdbee1744fc827d49bd7d42fee95aaec52cb0d4ca9984272bbe9ec6d1b393</cites><orcidid>0000-0002-1590-8244 ; 0000-0002-3290-929X ; 0000-0003-2257-7516 ; 0000-0001-8897-5600 ; 0000-0002-1281-3637 ; 0009-0008-1896-949X ; 0000-0003-3194-6731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10711962$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10711962$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shen, Yijun</creatorcontrib><creatorcontrib>Zhang, Yaqi</creatorcontrib><creatorcontrib>Yan, Lifang</creatorcontrib><creatorcontrib>Huang, Nuodi</creatorcontrib><creatorcontrib>Zhang, Xu</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Zhu, Limin</creatorcontrib><title>Dynamic Error Modeling and Compensation of a Scanning Probe on CMM</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>The raising demand for high-efficiency inspection in industrial manufacturing has significantly increased the required measurement speed, resulting in extra dynamic errors during measurement. Although the dynamic error modeling and compensation for the coordinate measuring machine (CMM) have been widely investigated, the influence of the dynamic error on the scanning probe system has attracted few attention. In this article, the dynamic performance of the scanning probe is analyzed, and the dynamic error is modeled as the constant time delay in the response of a second-order system subjected to the ramp excitation. The delay-inclusive probe model is proposed to compensate the dynamic error in the probe signal, and the corresponding calibration method is given to identify the constant time delay, which only requires to probe 25 points on a sphere. Three sets of probing and scanning experiments are conducted to compare the accuracy of the proposed method against the existing methods in high-speed measurement. Although the probing accuracy with the existing calibration methods is reduced to several tens of micrometers in high-speed probing, the proposed method maintains microlevel accuracy, which is basically identical to the accuracy in low speed. Moreover, the calibration time for the proposed method is only 17.4% of the Renishaw commercial calibration method.</description><subject>Accuracy</subject><subject>Calibration</subject><subject>Contact measurement</subject><subject>Coordinate measuring machines</subject><subject>coordinate measuring machines (CMMs)</subject><subject>Delay effects</subject><subject>Delays</subject><subject>dynamic error</subject><subject>Inspection</subject><subject>Manufacturing</subject><subject>Mathematical models</subject><subject>Measurement uncertainty</subject><subject>probe calibration</subject><subject>Probes</subject><subject>scanning probe</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqGwMzD4DyTYjj_qEUKBSo1AosyRPy4oqLEru0v_PYnageVOuvd9bngQuqekopTox-26rRhhvKq5kqJmF6igQqhSS8kuUUEIXZaaC3mNbnL-JYQoyVWBnl-OwYyDw6uUYsJt9LAbwg82weMmjnsI2RyGGHDsscFfzoQwx58pWsDTuWnbW3TVm12Gu_NeoO_X1bZ5Lzcfb-vmaVM6ytWhpIZ45y0AVZz3bsmU59r6abIeQAtjwAnmLPHcGa2XnClmLWhw0lNb63qByOmvSzHnBH23T8No0rGjpJsddJODbnbQnR1MyMMJGQDgX11RqiWr_wCemlh3</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Shen, Yijun</creator><creator>Zhang, Yaqi</creator><creator>Yan, Lifang</creator><creator>Huang, Nuodi</creator><creator>Zhang, Xu</creator><creator>Zhang, Yang</creator><creator>Zhu, Limin</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1590-8244</orcidid><orcidid>https://orcid.org/0000-0002-3290-929X</orcidid><orcidid>https://orcid.org/0000-0003-2257-7516</orcidid><orcidid>https://orcid.org/0000-0001-8897-5600</orcidid><orcidid>https://orcid.org/0000-0002-1281-3637</orcidid><orcidid>https://orcid.org/0009-0008-1896-949X</orcidid><orcidid>https://orcid.org/0000-0003-3194-6731</orcidid></search><sort><creationdate>2024</creationdate><title>Dynamic Error Modeling and Compensation of a Scanning Probe on CMM</title><author>Shen, Yijun ; Zhang, Yaqi ; Yan, Lifang ; Huang, Nuodi ; Zhang, Xu ; Zhang, Yang ; Zhu, Limin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-1a0dcdbee1744fc827d49bd7d42fee95aaec52cb0d4ca9984272bbe9ec6d1b393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Calibration</topic><topic>Contact measurement</topic><topic>Coordinate measuring machines</topic><topic>coordinate measuring machines (CMMs)</topic><topic>Delay effects</topic><topic>Delays</topic><topic>dynamic error</topic><topic>Inspection</topic><topic>Manufacturing</topic><topic>Mathematical models</topic><topic>Measurement uncertainty</topic><topic>probe calibration</topic><topic>Probes</topic><topic>scanning probe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Yijun</creatorcontrib><creatorcontrib>Zhang, Yaqi</creatorcontrib><creatorcontrib>Yan, Lifang</creatorcontrib><creatorcontrib>Huang, Nuodi</creatorcontrib><creatorcontrib>Zhang, Xu</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Zhu, Limin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shen, Yijun</au><au>Zhang, Yaqi</au><au>Yan, Lifang</au><au>Huang, Nuodi</au><au>Zhang, Xu</au><au>Zhang, Yang</au><au>Zhu, Limin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Error Modeling and Compensation of a Scanning Probe on CMM</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>The raising demand for high-efficiency inspection in industrial manufacturing has significantly increased the required measurement speed, resulting in extra dynamic errors during measurement. Although the dynamic error modeling and compensation for the coordinate measuring machine (CMM) have been widely investigated, the influence of the dynamic error on the scanning probe system has attracted few attention. In this article, the dynamic performance of the scanning probe is analyzed, and the dynamic error is modeled as the constant time delay in the response of a second-order system subjected to the ramp excitation. The delay-inclusive probe model is proposed to compensate the dynamic error in the probe signal, and the corresponding calibration method is given to identify the constant time delay, which only requires to probe 25 points on a sphere. Three sets of probing and scanning experiments are conducted to compare the accuracy of the proposed method against the existing methods in high-speed measurement. Although the probing accuracy with the existing calibration methods is reduced to several tens of micrometers in high-speed probing, the proposed method maintains microlevel accuracy, which is basically identical to the accuracy in low speed. Moreover, the calibration time for the proposed method is only 17.4% of the Renishaw commercial calibration method.</abstract><pub>IEEE</pub><doi>10.1109/TIM.2024.3476532</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1590-8244</orcidid><orcidid>https://orcid.org/0000-0002-3290-929X</orcidid><orcidid>https://orcid.org/0000-0003-2257-7516</orcidid><orcidid>https://orcid.org/0000-0001-8897-5600</orcidid><orcidid>https://orcid.org/0000-0002-1281-3637</orcidid><orcidid>https://orcid.org/0009-0008-1896-949X</orcidid><orcidid>https://orcid.org/0000-0003-3194-6731</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-9
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_10711962
source IEEE Xplore
subjects Accuracy
Calibration
Contact measurement
Coordinate measuring machines
coordinate measuring machines (CMMs)
Delay effects
Delays
dynamic error
Inspection
Manufacturing
Mathematical models
Measurement uncertainty
probe calibration
Probes
scanning probe
title Dynamic Error Modeling and Compensation of a Scanning Probe on CMM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A02%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Error%20Modeling%20and%20Compensation%20of%20a%20Scanning%20Probe%20on%20CMM&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Shen,%20Yijun&rft.date=2024&rft.volume=73&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3476532&rft_dat=%3Ccrossref_RIE%3E10_1109_TIM_2024_3476532%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10711962&rfr_iscdi=true