Dynamic Error Modeling and Compensation of a Scanning Probe on CMM
The raising demand for high-efficiency inspection in industrial manufacturing has significantly increased the required measurement speed, resulting in extra dynamic errors during measurement. Although the dynamic error modeling and compensation for the coordinate measuring machine (CMM) have been wi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-9 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 73 |
creator | Shen, Yijun Zhang, Yaqi Yan, Lifang Huang, Nuodi Zhang, Xu Zhang, Yang Zhu, Limin |
description | The raising demand for high-efficiency inspection in industrial manufacturing has significantly increased the required measurement speed, resulting in extra dynamic errors during measurement. Although the dynamic error modeling and compensation for the coordinate measuring machine (CMM) have been widely investigated, the influence of the dynamic error on the scanning probe system has attracted few attention. In this article, the dynamic performance of the scanning probe is analyzed, and the dynamic error is modeled as the constant time delay in the response of a second-order system subjected to the ramp excitation. The delay-inclusive probe model is proposed to compensate the dynamic error in the probe signal, and the corresponding calibration method is given to identify the constant time delay, which only requires to probe 25 points on a sphere. Three sets of probing and scanning experiments are conducted to compare the accuracy of the proposed method against the existing methods in high-speed measurement. Although the probing accuracy with the existing calibration methods is reduced to several tens of micrometers in high-speed probing, the proposed method maintains microlevel accuracy, which is basically identical to the accuracy in low speed. Moreover, the calibration time for the proposed method is only 17.4% of the Renishaw commercial calibration method. |
doi_str_mv | 10.1109/TIM.2024.3476532 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10711962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10711962</ieee_id><sourcerecordid>10_1109_TIM_2024_3476532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-1a0dcdbee1744fc827d49bd7d42fee95aaec52cb0d4ca9984272bbe9ec6d1b393</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqGwMzD4DyTYjj_qEUKBSo1AosyRPy4oqLEru0v_PYnageVOuvd9bngQuqekopTox-26rRhhvKq5kqJmF6igQqhSS8kuUUEIXZaaC3mNbnL-JYQoyVWBnl-OwYyDw6uUYsJt9LAbwg82weMmjnsI2RyGGHDsscFfzoQwx58pWsDTuWnbW3TVm12Gu_NeoO_X1bZ5Lzcfb-vmaVM6ytWhpIZ45y0AVZz3bsmU59r6abIeQAtjwAnmLPHcGa2XnClmLWhw0lNb63qByOmvSzHnBH23T8No0rGjpJsddJODbnbQnR1MyMMJGQDgX11RqiWr_wCemlh3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamic Error Modeling and Compensation of a Scanning Probe on CMM</title><source>IEEE Xplore</source><creator>Shen, Yijun ; Zhang, Yaqi ; Yan, Lifang ; Huang, Nuodi ; Zhang, Xu ; Zhang, Yang ; Zhu, Limin</creator><creatorcontrib>Shen, Yijun ; Zhang, Yaqi ; Yan, Lifang ; Huang, Nuodi ; Zhang, Xu ; Zhang, Yang ; Zhu, Limin</creatorcontrib><description>The raising demand for high-efficiency inspection in industrial manufacturing has significantly increased the required measurement speed, resulting in extra dynamic errors during measurement. Although the dynamic error modeling and compensation for the coordinate measuring machine (CMM) have been widely investigated, the influence of the dynamic error on the scanning probe system has attracted few attention. In this article, the dynamic performance of the scanning probe is analyzed, and the dynamic error is modeled as the constant time delay in the response of a second-order system subjected to the ramp excitation. The delay-inclusive probe model is proposed to compensate the dynamic error in the probe signal, and the corresponding calibration method is given to identify the constant time delay, which only requires to probe 25 points on a sphere. Three sets of probing and scanning experiments are conducted to compare the accuracy of the proposed method against the existing methods in high-speed measurement. Although the probing accuracy with the existing calibration methods is reduced to several tens of micrometers in high-speed probing, the proposed method maintains microlevel accuracy, which is basically identical to the accuracy in low speed. Moreover, the calibration time for the proposed method is only 17.4% of the Renishaw commercial calibration method.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3476532</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Calibration ; Contact measurement ; Coordinate measuring machines ; coordinate measuring machines (CMMs) ; Delay effects ; Delays ; dynamic error ; Inspection ; Manufacturing ; Mathematical models ; Measurement uncertainty ; probe calibration ; Probes ; scanning probe</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-9</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c147t-1a0dcdbee1744fc827d49bd7d42fee95aaec52cb0d4ca9984272bbe9ec6d1b393</cites><orcidid>0000-0002-1590-8244 ; 0000-0002-3290-929X ; 0000-0003-2257-7516 ; 0000-0001-8897-5600 ; 0000-0002-1281-3637 ; 0009-0008-1896-949X ; 0000-0003-3194-6731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10711962$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10711962$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shen, Yijun</creatorcontrib><creatorcontrib>Zhang, Yaqi</creatorcontrib><creatorcontrib>Yan, Lifang</creatorcontrib><creatorcontrib>Huang, Nuodi</creatorcontrib><creatorcontrib>Zhang, Xu</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Zhu, Limin</creatorcontrib><title>Dynamic Error Modeling and Compensation of a Scanning Probe on CMM</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>The raising demand for high-efficiency inspection in industrial manufacturing has significantly increased the required measurement speed, resulting in extra dynamic errors during measurement. Although the dynamic error modeling and compensation for the coordinate measuring machine (CMM) have been widely investigated, the influence of the dynamic error on the scanning probe system has attracted few attention. In this article, the dynamic performance of the scanning probe is analyzed, and the dynamic error is modeled as the constant time delay in the response of a second-order system subjected to the ramp excitation. The delay-inclusive probe model is proposed to compensate the dynamic error in the probe signal, and the corresponding calibration method is given to identify the constant time delay, which only requires to probe 25 points on a sphere. Three sets of probing and scanning experiments are conducted to compare the accuracy of the proposed method against the existing methods in high-speed measurement. Although the probing accuracy with the existing calibration methods is reduced to several tens of micrometers in high-speed probing, the proposed method maintains microlevel accuracy, which is basically identical to the accuracy in low speed. Moreover, the calibration time for the proposed method is only 17.4% of the Renishaw commercial calibration method.</description><subject>Accuracy</subject><subject>Calibration</subject><subject>Contact measurement</subject><subject>Coordinate measuring machines</subject><subject>coordinate measuring machines (CMMs)</subject><subject>Delay effects</subject><subject>Delays</subject><subject>dynamic error</subject><subject>Inspection</subject><subject>Manufacturing</subject><subject>Mathematical models</subject><subject>Measurement uncertainty</subject><subject>probe calibration</subject><subject>Probes</subject><subject>scanning probe</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqGwMzD4DyTYjj_qEUKBSo1AosyRPy4oqLEru0v_PYnageVOuvd9bngQuqekopTox-26rRhhvKq5kqJmF6igQqhSS8kuUUEIXZaaC3mNbnL-JYQoyVWBnl-OwYyDw6uUYsJt9LAbwg82weMmjnsI2RyGGHDsscFfzoQwx58pWsDTuWnbW3TVm12Gu_NeoO_X1bZ5Lzcfb-vmaVM6ytWhpIZ45y0AVZz3bsmU59r6abIeQAtjwAnmLPHcGa2XnClmLWhw0lNb63qByOmvSzHnBH23T8No0rGjpJsddJODbnbQnR1MyMMJGQDgX11RqiWr_wCemlh3</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Shen, Yijun</creator><creator>Zhang, Yaqi</creator><creator>Yan, Lifang</creator><creator>Huang, Nuodi</creator><creator>Zhang, Xu</creator><creator>Zhang, Yang</creator><creator>Zhu, Limin</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1590-8244</orcidid><orcidid>https://orcid.org/0000-0002-3290-929X</orcidid><orcidid>https://orcid.org/0000-0003-2257-7516</orcidid><orcidid>https://orcid.org/0000-0001-8897-5600</orcidid><orcidid>https://orcid.org/0000-0002-1281-3637</orcidid><orcidid>https://orcid.org/0009-0008-1896-949X</orcidid><orcidid>https://orcid.org/0000-0003-3194-6731</orcidid></search><sort><creationdate>2024</creationdate><title>Dynamic Error Modeling and Compensation of a Scanning Probe on CMM</title><author>Shen, Yijun ; Zhang, Yaqi ; Yan, Lifang ; Huang, Nuodi ; Zhang, Xu ; Zhang, Yang ; Zhu, Limin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-1a0dcdbee1744fc827d49bd7d42fee95aaec52cb0d4ca9984272bbe9ec6d1b393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Calibration</topic><topic>Contact measurement</topic><topic>Coordinate measuring machines</topic><topic>coordinate measuring machines (CMMs)</topic><topic>Delay effects</topic><topic>Delays</topic><topic>dynamic error</topic><topic>Inspection</topic><topic>Manufacturing</topic><topic>Mathematical models</topic><topic>Measurement uncertainty</topic><topic>probe calibration</topic><topic>Probes</topic><topic>scanning probe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Yijun</creatorcontrib><creatorcontrib>Zhang, Yaqi</creatorcontrib><creatorcontrib>Yan, Lifang</creatorcontrib><creatorcontrib>Huang, Nuodi</creatorcontrib><creatorcontrib>Zhang, Xu</creatorcontrib><creatorcontrib>Zhang, Yang</creatorcontrib><creatorcontrib>Zhu, Limin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shen, Yijun</au><au>Zhang, Yaqi</au><au>Yan, Lifang</au><au>Huang, Nuodi</au><au>Zhang, Xu</au><au>Zhang, Yang</au><au>Zhu, Limin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Error Modeling and Compensation of a Scanning Probe on CMM</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>The raising demand for high-efficiency inspection in industrial manufacturing has significantly increased the required measurement speed, resulting in extra dynamic errors during measurement. Although the dynamic error modeling and compensation for the coordinate measuring machine (CMM) have been widely investigated, the influence of the dynamic error on the scanning probe system has attracted few attention. In this article, the dynamic performance of the scanning probe is analyzed, and the dynamic error is modeled as the constant time delay in the response of a second-order system subjected to the ramp excitation. The delay-inclusive probe model is proposed to compensate the dynamic error in the probe signal, and the corresponding calibration method is given to identify the constant time delay, which only requires to probe 25 points on a sphere. Three sets of probing and scanning experiments are conducted to compare the accuracy of the proposed method against the existing methods in high-speed measurement. Although the probing accuracy with the existing calibration methods is reduced to several tens of micrometers in high-speed probing, the proposed method maintains microlevel accuracy, which is basically identical to the accuracy in low speed. Moreover, the calibration time for the proposed method is only 17.4% of the Renishaw commercial calibration method.</abstract><pub>IEEE</pub><doi>10.1109/TIM.2024.3476532</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1590-8244</orcidid><orcidid>https://orcid.org/0000-0002-3290-929X</orcidid><orcidid>https://orcid.org/0000-0003-2257-7516</orcidid><orcidid>https://orcid.org/0000-0001-8897-5600</orcidid><orcidid>https://orcid.org/0000-0002-1281-3637</orcidid><orcidid>https://orcid.org/0009-0008-1896-949X</orcidid><orcidid>https://orcid.org/0000-0003-3194-6731</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-9 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_ieee_primary_10711962 |
source | IEEE Xplore |
subjects | Accuracy Calibration Contact measurement Coordinate measuring machines coordinate measuring machines (CMMs) Delay effects Delays dynamic error Inspection Manufacturing Mathematical models Measurement uncertainty probe calibration Probes scanning probe |
title | Dynamic Error Modeling and Compensation of a Scanning Probe on CMM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A02%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Error%20Modeling%20and%20Compensation%20of%20a%20Scanning%20Probe%20on%20CMM&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Shen,%20Yijun&rft.date=2024&rft.volume=73&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3476532&rft_dat=%3Ccrossref_RIE%3E10_1109_TIM_2024_3476532%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10711962&rfr_iscdi=true |