Positive-Incentive Pseudo Label Optimization for Salient Object Detection

We present a salient object detection method in this paper. It uses a lightweight network based on multi-scale information aggregation (MIA) module and bidirectional cross-stage feature fusion (BCF2) module to speed up the reasoning process. Besides, it designs a stepwise coupling optimization strat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.153841-153850
Hauptverfasser: Fang, Jie, Zhang, Weitao, Zhang, Shasha, Wang, Nan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 153850
container_issue
container_start_page 153841
container_title IEEE access
container_volume 12
creator Fang, Jie
Zhang, Weitao
Zhang, Shasha
Wang, Nan
description We present a salient object detection method in this paper. It uses a lightweight network based on multi-scale information aggregation (MIA) module and bidirectional cross-stage feature fusion (BCF2) module to speed up the reasoning process. Besides, it designs a stepwise coupling optimization strategy based on positive-incentive pseudo label to alleviate the miss detection rate for small objects and the false detection rate for big objects. It is worth noting that the positive-incentive pseudo label generation mechanism can increase the ratio of salient pixels in small objects to alleviate the severe category imbalance problem, while the stepwise coupling optimization strategy can avoid the misguidance of pseudo label to big objects. In addition, the experimental results demonstrate that our method is fairly efficient, its frame rate in reasoning phase reaches 275.6 FPS on NVIDIA RTX3080 GPU when the input resolution is set to 336\times 336 .
doi_str_mv 10.1109/ACCESS.2024.3476077
format Article
fullrecord <record><control><sourceid>doaj_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10707262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10707262</ieee_id><doaj_id>oai_doaj_org_article_b3087411048b4f6ebf18980cb8bb2b54</doaj_id><sourcerecordid>oai_doaj_org_article_b3087411048b4f6ebf18980cb8bb2b54</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-5f8b38d1f986dc398ee6daa7231353c106a48dac29b428b160606c99c15131b33</originalsourceid><addsrcrecordid>eNpNkNtKw0AQhhdRsNQ-gV7kBVL3lD1cllg1UGiher3sbiayJe2WJAr69G5Nkc5czDAz_8_wIXRP8JwQrB8XZbncbucUUz5nXAos5RWaUCJ0zgomri_6WzTr-x1OodKokBNUbWIfhvAFeXXwcDh12aaHzzpmK-ugzdbHIezDjx1CPGRN7LKtbUM6zNZuB37InmBIJS3v0E1j2x5m5zpF78_Lt_I1X61fqnKxyj0VZMiLRjmmatJoJWrPtAIQtbWSMpI-9AQLy1VtPdWOU-WIwCm91p4UhBHH2BRVo28d7c4cu7C33beJNpi_Qew-jO2G4FswjmEleYLEleONANcQpRX2TjlHXcGTFxu9fBf7voPm349gc4JrRrjmBNec4SbVw6gKAHChkFhSQdkvxgp1Fg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Positive-Incentive Pseudo Label Optimization for Salient Object Detection</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fang, Jie ; Zhang, Weitao ; Zhang, Shasha ; Wang, Nan</creator><creatorcontrib>Fang, Jie ; Zhang, Weitao ; Zhang, Shasha ; Wang, Nan</creatorcontrib><description>We present a salient object detection method in this paper. It uses a lightweight network based on multi-scale information aggregation (MIA) module and bidirectional cross-stage feature fusion (BCF2) module to speed up the reasoning process. Besides, it designs a stepwise coupling optimization strategy based on positive-incentive pseudo label to alleviate the miss detection rate for small objects and the false detection rate for big objects. It is worth noting that the positive-incentive pseudo label generation mechanism can increase the ratio of salient pixels in small objects to alleviate the severe category imbalance problem, while the stepwise coupling optimization strategy can avoid the misguidance of pseudo label to big objects. In addition, the experimental results demonstrate that our method is fairly efficient, its frame rate in reasoning phase reaches 275.6 FPS on NVIDIA RTX3080 GPU when the input resolution is set to &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;336\times 336 &lt;/tex-math&gt;&lt;/inline-formula&gt;.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3476077</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational efficiency ; Computer architecture ; Convolutional neural networks ; Couplings ; Feature extraction ; high-efficiency ; lightweight network ; Object detection ; Optimization ; Performance evaluation ; positive-incentive pseudo label ; Remote sensing ; Salient object detection ; Semantics</subject><ispartof>IEEE access, 2024, Vol.12, p.153841-153850</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-5f8b38d1f986dc398ee6daa7231353c106a48dac29b428b160606c99c15131b33</cites><orcidid>0009-0001-0514-1799 ; 0009-0003-9794-2917 ; 0000-0001-5601-7838 ; 0009-0002-0500-1195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10707262$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Fang, Jie</creatorcontrib><creatorcontrib>Zhang, Weitao</creatorcontrib><creatorcontrib>Zhang, Shasha</creatorcontrib><creatorcontrib>Wang, Nan</creatorcontrib><title>Positive-Incentive Pseudo Label Optimization for Salient Object Detection</title><title>IEEE access</title><addtitle>Access</addtitle><description>We present a salient object detection method in this paper. It uses a lightweight network based on multi-scale information aggregation (MIA) module and bidirectional cross-stage feature fusion (BCF2) module to speed up the reasoning process. Besides, it designs a stepwise coupling optimization strategy based on positive-incentive pseudo label to alleviate the miss detection rate for small objects and the false detection rate for big objects. It is worth noting that the positive-incentive pseudo label generation mechanism can increase the ratio of salient pixels in small objects to alleviate the severe category imbalance problem, while the stepwise coupling optimization strategy can avoid the misguidance of pseudo label to big objects. In addition, the experimental results demonstrate that our method is fairly efficient, its frame rate in reasoning phase reaches 275.6 FPS on NVIDIA RTX3080 GPU when the input resolution is set to &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;336\times 336 &lt;/tex-math&gt;&lt;/inline-formula&gt;.</description><subject>Computational efficiency</subject><subject>Computer architecture</subject><subject>Convolutional neural networks</subject><subject>Couplings</subject><subject>Feature extraction</subject><subject>high-efficiency</subject><subject>lightweight network</subject><subject>Object detection</subject><subject>Optimization</subject><subject>Performance evaluation</subject><subject>positive-incentive pseudo label</subject><subject>Remote sensing</subject><subject>Salient object detection</subject><subject>Semantics</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkNtKw0AQhhdRsNQ-gV7kBVL3lD1cllg1UGiher3sbiayJe2WJAr69G5Nkc5czDAz_8_wIXRP8JwQrB8XZbncbucUUz5nXAos5RWaUCJ0zgomri_6WzTr-x1OodKokBNUbWIfhvAFeXXwcDh12aaHzzpmK-ugzdbHIezDjx1CPGRN7LKtbUM6zNZuB37InmBIJS3v0E1j2x5m5zpF78_Lt_I1X61fqnKxyj0VZMiLRjmmatJoJWrPtAIQtbWSMpI-9AQLy1VtPdWOU-WIwCm91p4UhBHH2BRVo28d7c4cu7C33beJNpi_Qew-jO2G4FswjmEleYLEleONANcQpRX2TjlHXcGTFxu9fBf7voPm349gc4JrRrjmBNec4SbVw6gKAHChkFhSQdkvxgp1Fg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Fang, Jie</creator><creator>Zhang, Weitao</creator><creator>Zhang, Shasha</creator><creator>Wang, Nan</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0001-0514-1799</orcidid><orcidid>https://orcid.org/0009-0003-9794-2917</orcidid><orcidid>https://orcid.org/0000-0001-5601-7838</orcidid><orcidid>https://orcid.org/0009-0002-0500-1195</orcidid></search><sort><creationdate>2024</creationdate><title>Positive-Incentive Pseudo Label Optimization for Salient Object Detection</title><author>Fang, Jie ; Zhang, Weitao ; Zhang, Shasha ; Wang, Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-5f8b38d1f986dc398ee6daa7231353c106a48dac29b428b160606c99c15131b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computational efficiency</topic><topic>Computer architecture</topic><topic>Convolutional neural networks</topic><topic>Couplings</topic><topic>Feature extraction</topic><topic>high-efficiency</topic><topic>lightweight network</topic><topic>Object detection</topic><topic>Optimization</topic><topic>Performance evaluation</topic><topic>positive-incentive pseudo label</topic><topic>Remote sensing</topic><topic>Salient object detection</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Jie</creatorcontrib><creatorcontrib>Zhang, Weitao</creatorcontrib><creatorcontrib>Zhang, Shasha</creatorcontrib><creatorcontrib>Wang, Nan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Jie</au><au>Zhang, Weitao</au><au>Zhang, Shasha</au><au>Wang, Nan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positive-Incentive Pseudo Label Optimization for Salient Object Detection</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>153841</spage><epage>153850</epage><pages>153841-153850</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>We present a salient object detection method in this paper. It uses a lightweight network based on multi-scale information aggregation (MIA) module and bidirectional cross-stage feature fusion (BCF2) module to speed up the reasoning process. Besides, it designs a stepwise coupling optimization strategy based on positive-incentive pseudo label to alleviate the miss detection rate for small objects and the false detection rate for big objects. It is worth noting that the positive-incentive pseudo label generation mechanism can increase the ratio of salient pixels in small objects to alleviate the severe category imbalance problem, while the stepwise coupling optimization strategy can avoid the misguidance of pseudo label to big objects. In addition, the experimental results demonstrate that our method is fairly efficient, its frame rate in reasoning phase reaches 275.6 FPS on NVIDIA RTX3080 GPU when the input resolution is set to &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;336\times 336 &lt;/tex-math&gt;&lt;/inline-formula&gt;.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3476077</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0001-0514-1799</orcidid><orcidid>https://orcid.org/0009-0003-9794-2917</orcidid><orcidid>https://orcid.org/0000-0001-5601-7838</orcidid><orcidid>https://orcid.org/0009-0002-0500-1195</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.153841-153850
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10707262
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Computational efficiency
Computer architecture
Convolutional neural networks
Couplings
Feature extraction
high-efficiency
lightweight network
Object detection
Optimization
Performance evaluation
positive-incentive pseudo label
Remote sensing
Salient object detection
Semantics
title Positive-Incentive Pseudo Label Optimization for Salient Object Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A53%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positive-Incentive%20Pseudo%20Label%20Optimization%20for%20Salient%20Object%20Detection&rft.jtitle=IEEE%20access&rft.au=Fang,%20Jie&rft.date=2024&rft.volume=12&rft.spage=153841&rft.epage=153850&rft.pages=153841-153850&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3476077&rft_dat=%3Cdoaj_ieee_%3Eoai_doaj_org_article_b3087411048b4f6ebf18980cb8bb2b54%3C/doaj_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10707262&rft_doaj_id=oai_doaj_org_article_b3087411048b4f6ebf18980cb8bb2b54&rfr_iscdi=true