Real-Time Network-Level Traffic Signal Control: An Explicit Multiagent Coordination Method

Traffic signal control (TSC) has been one of the most useful ways for reducing urban road congestion. The challenge of TSC includes 1) real-time signal decision, 2) the complexity in traffic dynamics, and 3) the network-level coordination. Reinforcement learning (RL) methods can query policies by ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2024-12, Vol.25 (12), p.19688-19698
Hauptverfasser: Wang, Wanyuan, Zhang, Haipeng, Qiao, Tianchi, Ma, Jinming, Jin, Jiahui, Li, Zhibin, Wu, Weiwei, Jiang, Yichuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19698
container_issue 12
container_start_page 19688
container_title IEEE transactions on intelligent transportation systems
container_volume 25
creator Wang, Wanyuan
Zhang, Haipeng
Qiao, Tianchi
Ma, Jinming
Jin, Jiahui
Li, Zhibin
Wu, Weiwei
Jiang, Yichuan
description Traffic signal control (TSC) has been one of the most useful ways for reducing urban road congestion. The challenge of TSC includes 1) real-time signal decision, 2) the complexity in traffic dynamics, and 3) the network-level coordination. Reinforcement learning (RL) methods can query policies by mapping the traffic state to the signal decision in real-time, however, are inadequate for different traffic flow environment. By observing real traffic information, online planning methods can compute the signal decisions in a responsive manner. Unfortunately, existing online planning methods either require high computation complexity or get stuck in local coordination. Against this background, we propose an explicit multiagent coordination (EMC)-based online planning methods that can satisfy adaptive, real-time and network-level TSC. By multiagent, we model each intersection as an autonomous agent, and the coordination efficiency is modeled by a cost function between neighbor intersections. By network-level coordination, each agent exchanges messages of cost function with its neighbors in a fully decentralized manner. By real-time, the message-passing procedure can interrupt at any time when the real time limit is reached and agents select the optimal signal decisions according to current message. Finally, we test our EMC method in both synthetic and real road network datasets. Experimental results are encouraging: compared to RL and conventional transportation baselines, our EMC method performs reasonably well in terms of adapting to real-time traffic dynamics, minimizing vehicle travel time and scalability to city-scale road networks.
doi_str_mv 10.1109/TITS.2024.3468295
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10706980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10706980</ieee_id><sourcerecordid>10_1109_TITS_2024_3468295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-3168ad07d675e2f40e3b7f5420735fc2af1344822a508183fca5607dc3fb4e593</originalsourceid><addsrcrecordid>eNpNkMlOwzAURS0EEqXwAUgs_AMuHhOHXVUxVGpBomHDJnKd52Jwk8ox09-TqF2welfvDouD0CWjE8ZocV3Oy9WEUy4nQmaaF-oIjZhSmlDKsuNBc0kKqugpOuu69_4rFWMj9PoMJpDSbwE_Qvpu4wdZwBcEXEbjnLd45TeNCXjWNim24QZPG3z7swve-oSXnyF5s4Em9X4ba9-Y5NsGLyG9tfU5OnEmdHBxuGP0cndbzh7I4ul-PpsuiGVSJyJYpk1N8zrLFXAnKYh17pTkNBfKWW4cE1Jqzo2immnhrFFZH7fCrSWoQowR2-_a2HZdBFftot-a-FsxWg1wqgFONcCpDnD6ztW-4wHgXz6nWaGp-AMeC2Cg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Real-Time Network-Level Traffic Signal Control: An Explicit Multiagent Coordination Method</title><source>IEEE Explore</source><creator>Wang, Wanyuan ; Zhang, Haipeng ; Qiao, Tianchi ; Ma, Jinming ; Jin, Jiahui ; Li, Zhibin ; Wu, Weiwei ; Jiang, Yichuan</creator><creatorcontrib>Wang, Wanyuan ; Zhang, Haipeng ; Qiao, Tianchi ; Ma, Jinming ; Jin, Jiahui ; Li, Zhibin ; Wu, Weiwei ; Jiang, Yichuan</creatorcontrib><description>Traffic signal control (TSC) has been one of the most useful ways for reducing urban road congestion. The challenge of TSC includes 1) real-time signal decision, 2) the complexity in traffic dynamics, and 3) the network-level coordination. Reinforcement learning (RL) methods can query policies by mapping the traffic state to the signal decision in real-time, however, are inadequate for different traffic flow environment. By observing real traffic information, online planning methods can compute the signal decisions in a responsive manner. Unfortunately, existing online planning methods either require high computation complexity or get stuck in local coordination. Against this background, we propose an explicit multiagent coordination (EMC)-based online planning methods that can satisfy adaptive, real-time and network-level TSC. By multiagent, we model each intersection as an autonomous agent, and the coordination efficiency is modeled by a cost function between neighbor intersections. By network-level coordination, each agent exchanges messages of cost function with its neighbors in a fully decentralized manner. By real-time, the message-passing procedure can interrupt at any time when the real time limit is reached and agents select the optimal signal decisions according to current message. Finally, we test our EMC method in both synthetic and real road network datasets. Experimental results are encouraging: compared to RL and conventional transportation baselines, our EMC method performs reasonably well in terms of adapting to real-time traffic dynamics, minimizing vehicle travel time and scalability to city-scale road networks.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3468295</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Computer science ; Cost function ; distributed constraint optimization problem ; Electromagnetic compatibility ; message-passing ; multiagent coordination ; Real-time systems ; Reinforcement learning ; Roads ; Scalability ; Traffic signal control ; Turning ; Vehicle dynamics</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-12, Vol.25 (12), p.19688-19698</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9080-4971 ; 0000-0001-9570-1456 ; 0000-0001-7192-6853 ; 0000-0002-8738-9906 ; 0000-0002-7349-5249 ; 0000-0001-9172-6955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10706980$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10706980$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Wanyuan</creatorcontrib><creatorcontrib>Zhang, Haipeng</creatorcontrib><creatorcontrib>Qiao, Tianchi</creatorcontrib><creatorcontrib>Ma, Jinming</creatorcontrib><creatorcontrib>Jin, Jiahui</creatorcontrib><creatorcontrib>Li, Zhibin</creatorcontrib><creatorcontrib>Wu, Weiwei</creatorcontrib><creatorcontrib>Jiang, Yichuan</creatorcontrib><title>Real-Time Network-Level Traffic Signal Control: An Explicit Multiagent Coordination Method</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Traffic signal control (TSC) has been one of the most useful ways for reducing urban road congestion. The challenge of TSC includes 1) real-time signal decision, 2) the complexity in traffic dynamics, and 3) the network-level coordination. Reinforcement learning (RL) methods can query policies by mapping the traffic state to the signal decision in real-time, however, are inadequate for different traffic flow environment. By observing real traffic information, online planning methods can compute the signal decisions in a responsive manner. Unfortunately, existing online planning methods either require high computation complexity or get stuck in local coordination. Against this background, we propose an explicit multiagent coordination (EMC)-based online planning methods that can satisfy adaptive, real-time and network-level TSC. By multiagent, we model each intersection as an autonomous agent, and the coordination efficiency is modeled by a cost function between neighbor intersections. By network-level coordination, each agent exchanges messages of cost function with its neighbors in a fully decentralized manner. By real-time, the message-passing procedure can interrupt at any time when the real time limit is reached and agents select the optimal signal decisions according to current message. Finally, we test our EMC method in both synthetic and real road network datasets. Experimental results are encouraging: compared to RL and conventional transportation baselines, our EMC method performs reasonably well in terms of adapting to real-time traffic dynamics, minimizing vehicle travel time and scalability to city-scale road networks.</description><subject>Adaptation models</subject><subject>Computer science</subject><subject>Cost function</subject><subject>distributed constraint optimization problem</subject><subject>Electromagnetic compatibility</subject><subject>message-passing</subject><subject>multiagent coordination</subject><subject>Real-time systems</subject><subject>Reinforcement learning</subject><subject>Roads</subject><subject>Scalability</subject><subject>Traffic signal control</subject><subject>Turning</subject><subject>Vehicle dynamics</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMlOwzAURS0EEqXwAUgs_AMuHhOHXVUxVGpBomHDJnKd52Jwk8ox09-TqF2welfvDouD0CWjE8ZocV3Oy9WEUy4nQmaaF-oIjZhSmlDKsuNBc0kKqugpOuu69_4rFWMj9PoMJpDSbwE_Qvpu4wdZwBcEXEbjnLd45TeNCXjWNim24QZPG3z7swve-oSXnyF5s4Em9X4ba9-Y5NsGLyG9tfU5OnEmdHBxuGP0cndbzh7I4ul-PpsuiGVSJyJYpk1N8zrLFXAnKYh17pTkNBfKWW4cE1Jqzo2immnhrFFZH7fCrSWoQowR2-_a2HZdBFftot-a-FsxWg1wqgFONcCpDnD6ztW-4wHgXz6nWaGp-AMeC2Cg</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Wang, Wanyuan</creator><creator>Zhang, Haipeng</creator><creator>Qiao, Tianchi</creator><creator>Ma, Jinming</creator><creator>Jin, Jiahui</creator><creator>Li, Zhibin</creator><creator>Wu, Weiwei</creator><creator>Jiang, Yichuan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9080-4971</orcidid><orcidid>https://orcid.org/0000-0001-9570-1456</orcidid><orcidid>https://orcid.org/0000-0001-7192-6853</orcidid><orcidid>https://orcid.org/0000-0002-8738-9906</orcidid><orcidid>https://orcid.org/0000-0002-7349-5249</orcidid><orcidid>https://orcid.org/0000-0001-9172-6955</orcidid></search><sort><creationdate>202412</creationdate><title>Real-Time Network-Level Traffic Signal Control: An Explicit Multiagent Coordination Method</title><author>Wang, Wanyuan ; Zhang, Haipeng ; Qiao, Tianchi ; Ma, Jinming ; Jin, Jiahui ; Li, Zhibin ; Wu, Weiwei ; Jiang, Yichuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-3168ad07d675e2f40e3b7f5420735fc2af1344822a508183fca5607dc3fb4e593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Computer science</topic><topic>Cost function</topic><topic>distributed constraint optimization problem</topic><topic>Electromagnetic compatibility</topic><topic>message-passing</topic><topic>multiagent coordination</topic><topic>Real-time systems</topic><topic>Reinforcement learning</topic><topic>Roads</topic><topic>Scalability</topic><topic>Traffic signal control</topic><topic>Turning</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wanyuan</creatorcontrib><creatorcontrib>Zhang, Haipeng</creatorcontrib><creatorcontrib>Qiao, Tianchi</creatorcontrib><creatorcontrib>Ma, Jinming</creatorcontrib><creatorcontrib>Jin, Jiahui</creatorcontrib><creatorcontrib>Li, Zhibin</creatorcontrib><creatorcontrib>Wu, Weiwei</creatorcontrib><creatorcontrib>Jiang, Yichuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Wanyuan</au><au>Zhang, Haipeng</au><au>Qiao, Tianchi</au><au>Ma, Jinming</au><au>Jin, Jiahui</au><au>Li, Zhibin</au><au>Wu, Weiwei</au><au>Jiang, Yichuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Network-Level Traffic Signal Control: An Explicit Multiagent Coordination Method</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-12</date><risdate>2024</risdate><volume>25</volume><issue>12</issue><spage>19688</spage><epage>19698</epage><pages>19688-19698</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Traffic signal control (TSC) has been one of the most useful ways for reducing urban road congestion. The challenge of TSC includes 1) real-time signal decision, 2) the complexity in traffic dynamics, and 3) the network-level coordination. Reinforcement learning (RL) methods can query policies by mapping the traffic state to the signal decision in real-time, however, are inadequate for different traffic flow environment. By observing real traffic information, online planning methods can compute the signal decisions in a responsive manner. Unfortunately, existing online planning methods either require high computation complexity or get stuck in local coordination. Against this background, we propose an explicit multiagent coordination (EMC)-based online planning methods that can satisfy adaptive, real-time and network-level TSC. By multiagent, we model each intersection as an autonomous agent, and the coordination efficiency is modeled by a cost function between neighbor intersections. By network-level coordination, each agent exchanges messages of cost function with its neighbors in a fully decentralized manner. By real-time, the message-passing procedure can interrupt at any time when the real time limit is reached and agents select the optimal signal decisions according to current message. Finally, we test our EMC method in both synthetic and real road network datasets. Experimental results are encouraging: compared to RL and conventional transportation baselines, our EMC method performs reasonably well in terms of adapting to real-time traffic dynamics, minimizing vehicle travel time and scalability to city-scale road networks.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3468295</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9080-4971</orcidid><orcidid>https://orcid.org/0000-0001-9570-1456</orcidid><orcidid>https://orcid.org/0000-0001-7192-6853</orcidid><orcidid>https://orcid.org/0000-0002-8738-9906</orcidid><orcidid>https://orcid.org/0000-0002-7349-5249</orcidid><orcidid>https://orcid.org/0000-0001-9172-6955</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2024-12, Vol.25 (12), p.19688-19698
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_10706980
source IEEE Explore
subjects Adaptation models
Computer science
Cost function
distributed constraint optimization problem
Electromagnetic compatibility
message-passing
multiagent coordination
Real-time systems
Reinforcement learning
Roads
Scalability
Traffic signal control
Turning
Vehicle dynamics
title Real-Time Network-Level Traffic Signal Control: An Explicit Multiagent Coordination Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T14%3A59%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Network-Level%20Traffic%20Signal%20Control:%20An%20Explicit%20Multiagent%20Coordination%20Method&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Wang,%20Wanyuan&rft.date=2024-12&rft.volume=25&rft.issue=12&rft.spage=19688&rft.epage=19698&rft.pages=19688-19698&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3468295&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2024_3468295%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10706980&rfr_iscdi=true