Unified Modeling and Control Methods for Ripple Power Decoupling Circuit Based on DC-Split Capacitor

Single-phase inverter systems inherently exhibit second-harmonic ripple power, which must be suppressed to minimize its adverse effects on the system. One effective technique for ripple power decoupling involves injecting complementary ripple voltages into dc split capacitors. By exploiting the ener...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2025-01, Vol.40 (1), p.665-678
Hauptverfasser: Wang, Ziyin, Li, Zhenchao, Zhang, Yan, Shu, Jia, Liu, Jinjun, Li, Xianting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 678
container_issue 1
container_start_page 665
container_title IEEE transactions on power electronics
container_volume 40
creator Wang, Ziyin
Li, Zhenchao
Zhang, Yan
Shu, Jia
Liu, Jinjun
Li, Xianting
description Single-phase inverter systems inherently exhibit second-harmonic ripple power, which must be suppressed to minimize its adverse effects on the system. One effective technique for ripple power decoupling involves injecting complementary ripple voltages into dc split capacitors. By exploiting the energy differential between the split capacitors, ripple power is effectively compensated, whereas the complementary capacitor voltages maintain a stable dc bus voltage. This article presents a unified model that elucidates the internal physical mechanisms underlying power decoupling methods based on dc split capacitors. From this model, four distinct methods are derived, revealing the necessity of bidirectional power flow and explaining why certain previous methods have only achieved partial ripple power decoupling. Furthermore, the methods are compared comprehensively, taking into account capacitance requirements, semiconductor stress, and system volume to determine the optimal design. Finally, the unified model is validated using a 400-W IPOS CLLLC-fed voltage source inverter prototype. Experimental results demonstrate that all methods significantly suppress ripple power with reduced capacitance, with the differential capacitance approach, featuring an unbalanced dc operating point design, delivering the best overall performance.
doi_str_mv 10.1109/TPEL.2024.3475570
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10706889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10706889</ieee_id><sourcerecordid>10_1109_TPEL_2024_3475570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-bc3fd02493e7e3eda63649f39853814f9c5d0ba002973051f264320c6bffeadf3</originalsourceid><addsrcrecordid>eNpNkEtOwzAURS0EEqWwACQG3kDKc-wk9hDS8pFSUUE7jlz7GYxCHDmpELsnpR0wuoP7ke4h5JrBjDFQt-vVopqlkIoZF0WWFXBCJkwJlgCD4pRMQMoskUrxc3LR958ATGTAJsRuWu88WroMFhvfvlPdWlqGdoihoUscPoLtqQuRvvqua5CuwjdGOkcTdt1fvvTR7PxA73U_zoSWzsvkbbQGWupOGz-EeEnOnG56vDrqlGweFuvyKaleHp_LuyoxTMgh2Rru7HhBcSyQo9U5z4VyXMmMSyacMpmFrQZIVcEhYy7NBU_B5FvnUFvHp4Qddk0MfR_R1V30Xzr-1AzqPaZ6j6neY6qPmMbOzaHjEfFfvoBcSsV_AZy4ZF8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unified Modeling and Control Methods for Ripple Power Decoupling Circuit Based on DC-Split Capacitor</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Ziyin ; Li, Zhenchao ; Zhang, Yan ; Shu, Jia ; Liu, Jinjun ; Li, Xianting</creator><creatorcontrib>Wang, Ziyin ; Li, Zhenchao ; Zhang, Yan ; Shu, Jia ; Liu, Jinjun ; Li, Xianting</creatorcontrib><description>Single-phase inverter systems inherently exhibit second-harmonic ripple power, which must be suppressed to minimize its adverse effects on the system. One effective technique for ripple power decoupling involves injecting complementary ripple voltages into dc split capacitors. By exploiting the energy differential between the split capacitors, ripple power is effectively compensated, whereas the complementary capacitor voltages maintain a stable dc bus voltage. This article presents a unified model that elucidates the internal physical mechanisms underlying power decoupling methods based on dc split capacitors. From this model, four distinct methods are derived, revealing the necessity of bidirectional power flow and explaining why certain previous methods have only achieved partial ripple power decoupling. Furthermore, the methods are compared comprehensively, taking into account capacitance requirements, semiconductor stress, and system volume to determine the optimal design. Finally, the unified model is validated using a 400-W IPOS CLLLC-fed voltage source inverter prototype. Experimental results demonstrate that all methods significantly suppress ripple power with reduced capacitance, with the differential capacitance approach, featuring an unbalanced dc operating point design, delivering the best overall performance.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2024.3475570</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bidirectional CLLLC resonant converter ; Capacitance ; Capacitors ; Fluctuations ; Frequency control ; Frequency conversion ; Integrated circuit modeling ; Inverters ; second harmonics power decoupling ; split capacitor ; Stress ; unified modeling ; Voltage control ; Voltage fluctuations</subject><ispartof>IEEE transactions on power electronics, 2025-01, Vol.40 (1), p.665-678</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-bc3fd02493e7e3eda63649f39853814f9c5d0ba002973051f264320c6bffeadf3</cites><orcidid>0009-0000-1728-1417 ; 0000-0003-0050-2548 ; 0000-0003-0378-2194 ; 0000-0002-8366-2725 ; 0000-0002-6247-8603</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10706889$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10706889$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Ziyin</creatorcontrib><creatorcontrib>Li, Zhenchao</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Shu, Jia</creatorcontrib><creatorcontrib>Liu, Jinjun</creatorcontrib><creatorcontrib>Li, Xianting</creatorcontrib><title>Unified Modeling and Control Methods for Ripple Power Decoupling Circuit Based on DC-Split Capacitor</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Single-phase inverter systems inherently exhibit second-harmonic ripple power, which must be suppressed to minimize its adverse effects on the system. One effective technique for ripple power decoupling involves injecting complementary ripple voltages into dc split capacitors. By exploiting the energy differential between the split capacitors, ripple power is effectively compensated, whereas the complementary capacitor voltages maintain a stable dc bus voltage. This article presents a unified model that elucidates the internal physical mechanisms underlying power decoupling methods based on dc split capacitors. From this model, four distinct methods are derived, revealing the necessity of bidirectional power flow and explaining why certain previous methods have only achieved partial ripple power decoupling. Furthermore, the methods are compared comprehensively, taking into account capacitance requirements, semiconductor stress, and system volume to determine the optimal design. Finally, the unified model is validated using a 400-W IPOS CLLLC-fed voltage source inverter prototype. Experimental results demonstrate that all methods significantly suppress ripple power with reduced capacitance, with the differential capacitance approach, featuring an unbalanced dc operating point design, delivering the best overall performance.</description><subject>Bidirectional CLLLC resonant converter</subject><subject>Capacitance</subject><subject>Capacitors</subject><subject>Fluctuations</subject><subject>Frequency control</subject><subject>Frequency conversion</subject><subject>Integrated circuit modeling</subject><subject>Inverters</subject><subject>second harmonics power decoupling</subject><subject>split capacitor</subject><subject>Stress</subject><subject>unified modeling</subject><subject>Voltage control</subject><subject>Voltage fluctuations</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtOwzAURS0EEqWwACQG3kDKc-wk9hDS8pFSUUE7jlz7GYxCHDmpELsnpR0wuoP7ke4h5JrBjDFQt-vVopqlkIoZF0WWFXBCJkwJlgCD4pRMQMoskUrxc3LR958ATGTAJsRuWu88WroMFhvfvlPdWlqGdoihoUscPoLtqQuRvvqua5CuwjdGOkcTdt1fvvTR7PxA73U_zoSWzsvkbbQGWupOGz-EeEnOnG56vDrqlGweFuvyKaleHp_LuyoxTMgh2Rru7HhBcSyQo9U5z4VyXMmMSyacMpmFrQZIVcEhYy7NBU_B5FvnUFvHp4Qddk0MfR_R1V30Xzr-1AzqPaZ6j6neY6qPmMbOzaHjEfFfvoBcSsV_AZy4ZF8</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Wang, Ziyin</creator><creator>Li, Zhenchao</creator><creator>Zhang, Yan</creator><creator>Shu, Jia</creator><creator>Liu, Jinjun</creator><creator>Li, Xianting</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0000-1728-1417</orcidid><orcidid>https://orcid.org/0000-0003-0050-2548</orcidid><orcidid>https://orcid.org/0000-0003-0378-2194</orcidid><orcidid>https://orcid.org/0000-0002-8366-2725</orcidid><orcidid>https://orcid.org/0000-0002-6247-8603</orcidid></search><sort><creationdate>202501</creationdate><title>Unified Modeling and Control Methods for Ripple Power Decoupling Circuit Based on DC-Split Capacitor</title><author>Wang, Ziyin ; Li, Zhenchao ; Zhang, Yan ; Shu, Jia ; Liu, Jinjun ; Li, Xianting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-bc3fd02493e7e3eda63649f39853814f9c5d0ba002973051f264320c6bffeadf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Bidirectional CLLLC resonant converter</topic><topic>Capacitance</topic><topic>Capacitors</topic><topic>Fluctuations</topic><topic>Frequency control</topic><topic>Frequency conversion</topic><topic>Integrated circuit modeling</topic><topic>Inverters</topic><topic>second harmonics power decoupling</topic><topic>split capacitor</topic><topic>Stress</topic><topic>unified modeling</topic><topic>Voltage control</topic><topic>Voltage fluctuations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ziyin</creatorcontrib><creatorcontrib>Li, Zhenchao</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Shu, Jia</creatorcontrib><creatorcontrib>Liu, Jinjun</creatorcontrib><creatorcontrib>Li, Xianting</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Ziyin</au><au>Li, Zhenchao</au><au>Zhang, Yan</au><au>Shu, Jia</au><au>Liu, Jinjun</au><au>Li, Xianting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unified Modeling and Control Methods for Ripple Power Decoupling Circuit Based on DC-Split Capacitor</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2025-01</date><risdate>2025</risdate><volume>40</volume><issue>1</issue><spage>665</spage><epage>678</epage><pages>665-678</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Single-phase inverter systems inherently exhibit second-harmonic ripple power, which must be suppressed to minimize its adverse effects on the system. One effective technique for ripple power decoupling involves injecting complementary ripple voltages into dc split capacitors. By exploiting the energy differential between the split capacitors, ripple power is effectively compensated, whereas the complementary capacitor voltages maintain a stable dc bus voltage. This article presents a unified model that elucidates the internal physical mechanisms underlying power decoupling methods based on dc split capacitors. From this model, four distinct methods are derived, revealing the necessity of bidirectional power flow and explaining why certain previous methods have only achieved partial ripple power decoupling. Furthermore, the methods are compared comprehensively, taking into account capacitance requirements, semiconductor stress, and system volume to determine the optimal design. Finally, the unified model is validated using a 400-W IPOS CLLLC-fed voltage source inverter prototype. Experimental results demonstrate that all methods significantly suppress ripple power with reduced capacitance, with the differential capacitance approach, featuring an unbalanced dc operating point design, delivering the best overall performance.</abstract><pub>IEEE</pub><doi>10.1109/TPEL.2024.3475570</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0000-1728-1417</orcidid><orcidid>https://orcid.org/0000-0003-0050-2548</orcidid><orcidid>https://orcid.org/0000-0003-0378-2194</orcidid><orcidid>https://orcid.org/0000-0002-8366-2725</orcidid><orcidid>https://orcid.org/0000-0002-6247-8603</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2025-01, Vol.40 (1), p.665-678
issn 0885-8993
1941-0107
language eng
recordid cdi_ieee_primary_10706889
source IEEE Electronic Library (IEL)
subjects Bidirectional CLLLC resonant converter
Capacitance
Capacitors
Fluctuations
Frequency control
Frequency conversion
Integrated circuit modeling
Inverters
second harmonics power decoupling
split capacitor
Stress
unified modeling
Voltage control
Voltage fluctuations
title Unified Modeling and Control Methods for Ripple Power Decoupling Circuit Based on DC-Split Capacitor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unified%20Modeling%20and%20Control%20Methods%20for%20Ripple%20Power%20Decoupling%20Circuit%20Based%20on%20DC-Split%20Capacitor&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Wang,%20Ziyin&rft.date=2025-01&rft.volume=40&rft.issue=1&rft.spage=665&rft.epage=678&rft.pages=665-678&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2024.3475570&rft_dat=%3Ccrossref_RIE%3E10_1109_TPEL_2024_3475570%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10706889&rfr_iscdi=true