Unified Modeling and Control Methods for Ripple Power Decoupling Circuit Based on DC-Split Capacitor
Single-phase inverter systems inherently exhibit second-harmonic ripple power, which must be suppressed to minimize its adverse effects on the system. One effective technique for ripple power decoupling involves injecting complementary ripple voltages into dc split capacitors. By exploiting the ener...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2025-01, Vol.40 (1), p.665-678 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 678 |
---|---|
container_issue | 1 |
container_start_page | 665 |
container_title | IEEE transactions on power electronics |
container_volume | 40 |
creator | Wang, Ziyin Li, Zhenchao Zhang, Yan Shu, Jia Liu, Jinjun Li, Xianting |
description | Single-phase inverter systems inherently exhibit second-harmonic ripple power, which must be suppressed to minimize its adverse effects on the system. One effective technique for ripple power decoupling involves injecting complementary ripple voltages into dc split capacitors. By exploiting the energy differential between the split capacitors, ripple power is effectively compensated, whereas the complementary capacitor voltages maintain a stable dc bus voltage. This article presents a unified model that elucidates the internal physical mechanisms underlying power decoupling methods based on dc split capacitors. From this model, four distinct methods are derived, revealing the necessity of bidirectional power flow and explaining why certain previous methods have only achieved partial ripple power decoupling. Furthermore, the methods are compared comprehensively, taking into account capacitance requirements, semiconductor stress, and system volume to determine the optimal design. Finally, the unified model is validated using a 400-W IPOS CLLLC-fed voltage source inverter prototype. Experimental results demonstrate that all methods significantly suppress ripple power with reduced capacitance, with the differential capacitance approach, featuring an unbalanced dc operating point design, delivering the best overall performance. |
doi_str_mv | 10.1109/TPEL.2024.3475570 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10706889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10706889</ieee_id><sourcerecordid>10_1109_TPEL_2024_3475570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-bc3fd02493e7e3eda63649f39853814f9c5d0ba002973051f264320c6bffeadf3</originalsourceid><addsrcrecordid>eNpNkEtOwzAURS0EEqWwACQG3kDKc-wk9hDS8pFSUUE7jlz7GYxCHDmpELsnpR0wuoP7ke4h5JrBjDFQt-vVopqlkIoZF0WWFXBCJkwJlgCD4pRMQMoskUrxc3LR958ATGTAJsRuWu88WroMFhvfvlPdWlqGdoihoUscPoLtqQuRvvqua5CuwjdGOkcTdt1fvvTR7PxA73U_zoSWzsvkbbQGWupOGz-EeEnOnG56vDrqlGweFuvyKaleHp_LuyoxTMgh2Rru7HhBcSyQo9U5z4VyXMmMSyacMpmFrQZIVcEhYy7NBU_B5FvnUFvHp4Qddk0MfR_R1V30Xzr-1AzqPaZ6j6neY6qPmMbOzaHjEfFfvoBcSsV_AZy4ZF8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unified Modeling and Control Methods for Ripple Power Decoupling Circuit Based on DC-Split Capacitor</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Ziyin ; Li, Zhenchao ; Zhang, Yan ; Shu, Jia ; Liu, Jinjun ; Li, Xianting</creator><creatorcontrib>Wang, Ziyin ; Li, Zhenchao ; Zhang, Yan ; Shu, Jia ; Liu, Jinjun ; Li, Xianting</creatorcontrib><description>Single-phase inverter systems inherently exhibit second-harmonic ripple power, which must be suppressed to minimize its adverse effects on the system. One effective technique for ripple power decoupling involves injecting complementary ripple voltages into dc split capacitors. By exploiting the energy differential between the split capacitors, ripple power is effectively compensated, whereas the complementary capacitor voltages maintain a stable dc bus voltage. This article presents a unified model that elucidates the internal physical mechanisms underlying power decoupling methods based on dc split capacitors. From this model, four distinct methods are derived, revealing the necessity of bidirectional power flow and explaining why certain previous methods have only achieved partial ripple power decoupling. Furthermore, the methods are compared comprehensively, taking into account capacitance requirements, semiconductor stress, and system volume to determine the optimal design. Finally, the unified model is validated using a 400-W IPOS CLLLC-fed voltage source inverter prototype. Experimental results demonstrate that all methods significantly suppress ripple power with reduced capacitance, with the differential capacitance approach, featuring an unbalanced dc operating point design, delivering the best overall performance.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2024.3475570</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bidirectional CLLLC resonant converter ; Capacitance ; Capacitors ; Fluctuations ; Frequency control ; Frequency conversion ; Integrated circuit modeling ; Inverters ; second harmonics power decoupling ; split capacitor ; Stress ; unified modeling ; Voltage control ; Voltage fluctuations</subject><ispartof>IEEE transactions on power electronics, 2025-01, Vol.40 (1), p.665-678</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-bc3fd02493e7e3eda63649f39853814f9c5d0ba002973051f264320c6bffeadf3</cites><orcidid>0009-0000-1728-1417 ; 0000-0003-0050-2548 ; 0000-0003-0378-2194 ; 0000-0002-8366-2725 ; 0000-0002-6247-8603</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10706889$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10706889$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Ziyin</creatorcontrib><creatorcontrib>Li, Zhenchao</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Shu, Jia</creatorcontrib><creatorcontrib>Liu, Jinjun</creatorcontrib><creatorcontrib>Li, Xianting</creatorcontrib><title>Unified Modeling and Control Methods for Ripple Power Decoupling Circuit Based on DC-Split Capacitor</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Single-phase inverter systems inherently exhibit second-harmonic ripple power, which must be suppressed to minimize its adverse effects on the system. One effective technique for ripple power decoupling involves injecting complementary ripple voltages into dc split capacitors. By exploiting the energy differential between the split capacitors, ripple power is effectively compensated, whereas the complementary capacitor voltages maintain a stable dc bus voltage. This article presents a unified model that elucidates the internal physical mechanisms underlying power decoupling methods based on dc split capacitors. From this model, four distinct methods are derived, revealing the necessity of bidirectional power flow and explaining why certain previous methods have only achieved partial ripple power decoupling. Furthermore, the methods are compared comprehensively, taking into account capacitance requirements, semiconductor stress, and system volume to determine the optimal design. Finally, the unified model is validated using a 400-W IPOS CLLLC-fed voltage source inverter prototype. Experimental results demonstrate that all methods significantly suppress ripple power with reduced capacitance, with the differential capacitance approach, featuring an unbalanced dc operating point design, delivering the best overall performance.</description><subject>Bidirectional CLLLC resonant converter</subject><subject>Capacitance</subject><subject>Capacitors</subject><subject>Fluctuations</subject><subject>Frequency control</subject><subject>Frequency conversion</subject><subject>Integrated circuit modeling</subject><subject>Inverters</subject><subject>second harmonics power decoupling</subject><subject>split capacitor</subject><subject>Stress</subject><subject>unified modeling</subject><subject>Voltage control</subject><subject>Voltage fluctuations</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtOwzAURS0EEqWwACQG3kDKc-wk9hDS8pFSUUE7jlz7GYxCHDmpELsnpR0wuoP7ke4h5JrBjDFQt-vVopqlkIoZF0WWFXBCJkwJlgCD4pRMQMoskUrxc3LR958ATGTAJsRuWu88WroMFhvfvlPdWlqGdoihoUscPoLtqQuRvvqua5CuwjdGOkcTdt1fvvTR7PxA73U_zoSWzsvkbbQGWupOGz-EeEnOnG56vDrqlGweFuvyKaleHp_LuyoxTMgh2Rru7HhBcSyQo9U5z4VyXMmMSyacMpmFrQZIVcEhYy7NBU_B5FvnUFvHp4Qddk0MfR_R1V30Xzr-1AzqPaZ6j6neY6qPmMbOzaHjEfFfvoBcSsV_AZy4ZF8</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Wang, Ziyin</creator><creator>Li, Zhenchao</creator><creator>Zhang, Yan</creator><creator>Shu, Jia</creator><creator>Liu, Jinjun</creator><creator>Li, Xianting</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0000-1728-1417</orcidid><orcidid>https://orcid.org/0000-0003-0050-2548</orcidid><orcidid>https://orcid.org/0000-0003-0378-2194</orcidid><orcidid>https://orcid.org/0000-0002-8366-2725</orcidid><orcidid>https://orcid.org/0000-0002-6247-8603</orcidid></search><sort><creationdate>202501</creationdate><title>Unified Modeling and Control Methods for Ripple Power Decoupling Circuit Based on DC-Split Capacitor</title><author>Wang, Ziyin ; Li, Zhenchao ; Zhang, Yan ; Shu, Jia ; Liu, Jinjun ; Li, Xianting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-bc3fd02493e7e3eda63649f39853814f9c5d0ba002973051f264320c6bffeadf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Bidirectional CLLLC resonant converter</topic><topic>Capacitance</topic><topic>Capacitors</topic><topic>Fluctuations</topic><topic>Frequency control</topic><topic>Frequency conversion</topic><topic>Integrated circuit modeling</topic><topic>Inverters</topic><topic>second harmonics power decoupling</topic><topic>split capacitor</topic><topic>Stress</topic><topic>unified modeling</topic><topic>Voltage control</topic><topic>Voltage fluctuations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ziyin</creatorcontrib><creatorcontrib>Li, Zhenchao</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Shu, Jia</creatorcontrib><creatorcontrib>Liu, Jinjun</creatorcontrib><creatorcontrib>Li, Xianting</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Ziyin</au><au>Li, Zhenchao</au><au>Zhang, Yan</au><au>Shu, Jia</au><au>Liu, Jinjun</au><au>Li, Xianting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unified Modeling and Control Methods for Ripple Power Decoupling Circuit Based on DC-Split Capacitor</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2025-01</date><risdate>2025</risdate><volume>40</volume><issue>1</issue><spage>665</spage><epage>678</epage><pages>665-678</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Single-phase inverter systems inherently exhibit second-harmonic ripple power, which must be suppressed to minimize its adverse effects on the system. One effective technique for ripple power decoupling involves injecting complementary ripple voltages into dc split capacitors. By exploiting the energy differential between the split capacitors, ripple power is effectively compensated, whereas the complementary capacitor voltages maintain a stable dc bus voltage. This article presents a unified model that elucidates the internal physical mechanisms underlying power decoupling methods based on dc split capacitors. From this model, four distinct methods are derived, revealing the necessity of bidirectional power flow and explaining why certain previous methods have only achieved partial ripple power decoupling. Furthermore, the methods are compared comprehensively, taking into account capacitance requirements, semiconductor stress, and system volume to determine the optimal design. Finally, the unified model is validated using a 400-W IPOS CLLLC-fed voltage source inverter prototype. Experimental results demonstrate that all methods significantly suppress ripple power with reduced capacitance, with the differential capacitance approach, featuring an unbalanced dc operating point design, delivering the best overall performance.</abstract><pub>IEEE</pub><doi>10.1109/TPEL.2024.3475570</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0000-1728-1417</orcidid><orcidid>https://orcid.org/0000-0003-0050-2548</orcidid><orcidid>https://orcid.org/0000-0003-0378-2194</orcidid><orcidid>https://orcid.org/0000-0002-8366-2725</orcidid><orcidid>https://orcid.org/0000-0002-6247-8603</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2025-01, Vol.40 (1), p.665-678 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_ieee_primary_10706889 |
source | IEEE Electronic Library (IEL) |
subjects | Bidirectional CLLLC resonant converter Capacitance Capacitors Fluctuations Frequency control Frequency conversion Integrated circuit modeling Inverters second harmonics power decoupling split capacitor Stress unified modeling Voltage control Voltage fluctuations |
title | Unified Modeling and Control Methods for Ripple Power Decoupling Circuit Based on DC-Split Capacitor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unified%20Modeling%20and%20Control%20Methods%20for%20Ripple%20Power%20Decoupling%20Circuit%20Based%20on%20DC-Split%20Capacitor&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Wang,%20Ziyin&rft.date=2025-01&rft.volume=40&rft.issue=1&rft.spage=665&rft.epage=678&rft.pages=665-678&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2024.3475570&rft_dat=%3Ccrossref_RIE%3E10_1109_TPEL_2024_3475570%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10706889&rfr_iscdi=true |