PDCNET: Deep Convolutional Neural Network for Classification of Periodontal Disease Using Dental Radiographs
Dental health plays a pivotal role in determining the general health and quality of life of a person. Dental caries is a prevalent health problem in the world; therefore, prompt and effective dental caries treatment is necessary for individuals who require pain relief. Conventional methods of diagno...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.150147-150168 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 150168 |
---|---|
container_issue | |
container_start_page | 150147 |
container_title | IEEE access |
container_volume | 12 |
creator | Bilal, Anas Haider Khan, Ali Almohammadi, Khalid Al Ghamdi, Sami A. Long, Haixia Malik, Hassaan |
description | Dental health plays a pivotal role in determining the general health and quality of life of a person. Dental caries is a prevalent health problem in the world; therefore, prompt and effective dental caries treatment is necessary for individuals who require pain relief. Conventional methods of diagnosing dental diseases, like visual examination and radiographic testing, depend on qualified medical professionals and can be incredibly labor-intensive and imprecise in their diagnosis. To overcome these challenges, this study designed a deep learning (DL) model for the diagnosis of several dental conditions such as tooth decay, non-periodontal, and periodontal disease. A novel model named periodontal disease classification network (PDCNET) based on convolutional neural network (CNN) has been developed for the identification of periodontal disease using dental radiographs. Additionally, the proposed PDCNET model has been evaluated on two publicly available benchmark datasets of dental caries. To handle the imbalanced classes of the dental caries dataset, this study used the SMOTE TOMEK method to generate new synthetic samples for the minority categories to ensure the periodontal disease dataset is balanced. The proposed PDCNET model acquired a 99.79% AUC, 98.39% recall, 98.39% accuracy, 98.39% precision, and an F1-score of 98.31%. Furthermore, the performance of the proposed PDCNET model is contrasted using the six baseline pre-trained classifiers such as EfficientNet-B0 (M1), DenseNet-201 (M2), Vgg-16 (M3), Vgg-19 (M4), Inception-V3 (M5), and MobileNet (M6) in terms of many parameters. The levels of accuracy attained by M1, M2, M3, M4, M5, and M6 are 85.94%, 94.37%, 91.96%, 93.57%, 89.95%, and 94.77%, respectively. The findings showed that the PDCNET model has superior outcomes as compared to baseline models and provides significant assistance to the dentist in the diagnosis of dental disease. |
doi_str_mv | 10.1109/ACCESS.2024.3472012 |
format | Article |
fullrecord | <record><control><sourceid>doaj_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10703069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10703069</ieee_id><doaj_id>oai_doaj_org_article_4d15980afd1d4c9296261e3e787dea80</doaj_id><sourcerecordid>oai_doaj_org_article_4d15980afd1d4c9296261e3e787dea80</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-921485ec70b7acb0dcc6980d0c61b4e6889b92b366b92e1d090e8a7fa5654f063</originalsourceid><addsrcrecordid>eNpNkF9PwjAUxRejiQT5BPqwLwD2z9atvpGBSkKQCDw3XXuHxbmSdmj89hZGDPfl3Jzc88vNiaJ7jEYYI_44LorpajUiiCQjmmQEYXIV9QhmfEhTyq4v9tto4P0OhcmDlWa9qF5OisV0_RRPAPZxYZtvWx9aYxtZxws4uJO0P9Z9xpV1cVFL701llDzexLaKl-CM1bZpw-XEeJAe4o03zTYQT-a71MZundx_-LvoppK1h8FZ-9HmebouXofzt5dZMZ4PFWG4HXKCkzwFlaEyk6pEWinGc6SRYrhMgOU5LzkpKWNBAGvEEeQyq2TK0qRCjPajWcfVVu7E3pkv6X6FlUacDOu2QrrWqBpEonEa2LLSWCeKE87CC0AhyzMNMkeBRTuWctZ7B9U_DyNx7F90_Ytj_-Lcf0g9dCkDABeJDFHEOP0D16mBvQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PDCNET: Deep Convolutional Neural Network for Classification of Periodontal Disease Using Dental Radiographs</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bilal, Anas ; Haider Khan, Ali ; Almohammadi, Khalid ; Al Ghamdi, Sami A. ; Long, Haixia ; Malik, Hassaan</creator><creatorcontrib>Bilal, Anas ; Haider Khan, Ali ; Almohammadi, Khalid ; Al Ghamdi, Sami A. ; Long, Haixia ; Malik, Hassaan</creatorcontrib><description>Dental health plays a pivotal role in determining the general health and quality of life of a person. Dental caries is a prevalent health problem in the world; therefore, prompt and effective dental caries treatment is necessary for individuals who require pain relief. Conventional methods of diagnosing dental diseases, like visual examination and radiographic testing, depend on qualified medical professionals and can be incredibly labor-intensive and imprecise in their diagnosis. To overcome these challenges, this study designed a deep learning (DL) model for the diagnosis of several dental conditions such as tooth decay, non-periodontal, and periodontal disease. A novel model named periodontal disease classification network (PDCNET) based on convolutional neural network (CNN) has been developed for the identification of periodontal disease using dental radiographs. Additionally, the proposed PDCNET model has been evaluated on two publicly available benchmark datasets of dental caries. To handle the imbalanced classes of the dental caries dataset, this study used the SMOTE TOMEK method to generate new synthetic samples for the minority categories to ensure the periodontal disease dataset is balanced. The proposed PDCNET model acquired a 99.79% AUC, 98.39% recall, 98.39% accuracy, 98.39% precision, and an F1-score of 98.31%. Furthermore, the performance of the proposed PDCNET model is contrasted using the six baseline pre-trained classifiers such as EfficientNet-B0 (M1), DenseNet-201 (M2), Vgg-16 (M3), Vgg-19 (M4), Inception-V3 (M5), and MobileNet (M6) in terms of many parameters. The levels of accuracy attained by M1, M2, M3, M4, M5, and M6 are 85.94%, 94.37%, 91.96%, 93.57%, 89.95%, and 94.77%, respectively. The findings showed that the PDCNET model has superior outcomes as compared to baseline models and provides significant assistance to the dentist in the diagnosis of dental disease.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3472012</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Computational modeling ; Computer science ; Convolutional neural networks ; Deep learning ; dental radiographs ; Dentistry ; Diagnostic radiography ; Diseases ; periodontal disease ; Solid modeling ; Teeth ; tooth decay ; Training</subject><ispartof>IEEE access, 2024, Vol.12, p.150147-150168</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-921485ec70b7acb0dcc6980d0c61b4e6889b92b366b92e1d090e8a7fa5654f063</cites><orcidid>0000-0002-2393-7600 ; 0000-0002-4402-5088 ; 0000-0002-7760-3374 ; 0000-0002-2484-9389 ; 0000-0002-5154-2948 ; 0000-0003-0813-142X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10703069$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Bilal, Anas</creatorcontrib><creatorcontrib>Haider Khan, Ali</creatorcontrib><creatorcontrib>Almohammadi, Khalid</creatorcontrib><creatorcontrib>Al Ghamdi, Sami A.</creatorcontrib><creatorcontrib>Long, Haixia</creatorcontrib><creatorcontrib>Malik, Hassaan</creatorcontrib><title>PDCNET: Deep Convolutional Neural Network for Classification of Periodontal Disease Using Dental Radiographs</title><title>IEEE access</title><addtitle>Access</addtitle><description>Dental health plays a pivotal role in determining the general health and quality of life of a person. Dental caries is a prevalent health problem in the world; therefore, prompt and effective dental caries treatment is necessary for individuals who require pain relief. Conventional methods of diagnosing dental diseases, like visual examination and radiographic testing, depend on qualified medical professionals and can be incredibly labor-intensive and imprecise in their diagnosis. To overcome these challenges, this study designed a deep learning (DL) model for the diagnosis of several dental conditions such as tooth decay, non-periodontal, and periodontal disease. A novel model named periodontal disease classification network (PDCNET) based on convolutional neural network (CNN) has been developed for the identification of periodontal disease using dental radiographs. Additionally, the proposed PDCNET model has been evaluated on two publicly available benchmark datasets of dental caries. To handle the imbalanced classes of the dental caries dataset, this study used the SMOTE TOMEK method to generate new synthetic samples for the minority categories to ensure the periodontal disease dataset is balanced. The proposed PDCNET model acquired a 99.79% AUC, 98.39% recall, 98.39% accuracy, 98.39% precision, and an F1-score of 98.31%. Furthermore, the performance of the proposed PDCNET model is contrasted using the six baseline pre-trained classifiers such as EfficientNet-B0 (M1), DenseNet-201 (M2), Vgg-16 (M3), Vgg-19 (M4), Inception-V3 (M5), and MobileNet (M6) in terms of many parameters. The levels of accuracy attained by M1, M2, M3, M4, M5, and M6 are 85.94%, 94.37%, 91.96%, 93.57%, 89.95%, and 94.77%, respectively. The findings showed that the PDCNET model has superior outcomes as compared to baseline models and provides significant assistance to the dentist in the diagnosis of dental disease.</description><subject>Accuracy</subject><subject>Computational modeling</subject><subject>Computer science</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>dental radiographs</subject><subject>Dentistry</subject><subject>Diagnostic radiography</subject><subject>Diseases</subject><subject>periodontal disease</subject><subject>Solid modeling</subject><subject>Teeth</subject><subject>tooth decay</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkF9PwjAUxRejiQT5BPqwLwD2z9atvpGBSkKQCDw3XXuHxbmSdmj89hZGDPfl3Jzc88vNiaJ7jEYYI_44LorpajUiiCQjmmQEYXIV9QhmfEhTyq4v9tto4P0OhcmDlWa9qF5OisV0_RRPAPZxYZtvWx9aYxtZxws4uJO0P9Z9xpV1cVFL701llDzexLaKl-CM1bZpw-XEeJAe4o03zTYQT-a71MZundx_-LvoppK1h8FZ-9HmebouXofzt5dZMZ4PFWG4HXKCkzwFlaEyk6pEWinGc6SRYrhMgOU5LzkpKWNBAGvEEeQyq2TK0qRCjPajWcfVVu7E3pkv6X6FlUacDOu2QrrWqBpEonEa2LLSWCeKE87CC0AhyzMNMkeBRTuWctZ7B9U_DyNx7F90_Ytj_-Lcf0g9dCkDABeJDFHEOP0D16mBvQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Bilal, Anas</creator><creator>Haider Khan, Ali</creator><creator>Almohammadi, Khalid</creator><creator>Al Ghamdi, Sami A.</creator><creator>Long, Haixia</creator><creator>Malik, Hassaan</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2393-7600</orcidid><orcidid>https://orcid.org/0000-0002-4402-5088</orcidid><orcidid>https://orcid.org/0000-0002-7760-3374</orcidid><orcidid>https://orcid.org/0000-0002-2484-9389</orcidid><orcidid>https://orcid.org/0000-0002-5154-2948</orcidid><orcidid>https://orcid.org/0000-0003-0813-142X</orcidid></search><sort><creationdate>2024</creationdate><title>PDCNET: Deep Convolutional Neural Network for Classification of Periodontal Disease Using Dental Radiographs</title><author>Bilal, Anas ; Haider Khan, Ali ; Almohammadi, Khalid ; Al Ghamdi, Sami A. ; Long, Haixia ; Malik, Hassaan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-921485ec70b7acb0dcc6980d0c61b4e6889b92b366b92e1d090e8a7fa5654f063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Computational modeling</topic><topic>Computer science</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>dental radiographs</topic><topic>Dentistry</topic><topic>Diagnostic radiography</topic><topic>Diseases</topic><topic>periodontal disease</topic><topic>Solid modeling</topic><topic>Teeth</topic><topic>tooth decay</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bilal, Anas</creatorcontrib><creatorcontrib>Haider Khan, Ali</creatorcontrib><creatorcontrib>Almohammadi, Khalid</creatorcontrib><creatorcontrib>Al Ghamdi, Sami A.</creatorcontrib><creatorcontrib>Long, Haixia</creatorcontrib><creatorcontrib>Malik, Hassaan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bilal, Anas</au><au>Haider Khan, Ali</au><au>Almohammadi, Khalid</au><au>Al Ghamdi, Sami A.</au><au>Long, Haixia</au><au>Malik, Hassaan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PDCNET: Deep Convolutional Neural Network for Classification of Periodontal Disease Using Dental Radiographs</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>150147</spage><epage>150168</epage><pages>150147-150168</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Dental health plays a pivotal role in determining the general health and quality of life of a person. Dental caries is a prevalent health problem in the world; therefore, prompt and effective dental caries treatment is necessary for individuals who require pain relief. Conventional methods of diagnosing dental diseases, like visual examination and radiographic testing, depend on qualified medical professionals and can be incredibly labor-intensive and imprecise in their diagnosis. To overcome these challenges, this study designed a deep learning (DL) model for the diagnosis of several dental conditions such as tooth decay, non-periodontal, and periodontal disease. A novel model named periodontal disease classification network (PDCNET) based on convolutional neural network (CNN) has been developed for the identification of periodontal disease using dental radiographs. Additionally, the proposed PDCNET model has been evaluated on two publicly available benchmark datasets of dental caries. To handle the imbalanced classes of the dental caries dataset, this study used the SMOTE TOMEK method to generate new synthetic samples for the minority categories to ensure the periodontal disease dataset is balanced. The proposed PDCNET model acquired a 99.79% AUC, 98.39% recall, 98.39% accuracy, 98.39% precision, and an F1-score of 98.31%. Furthermore, the performance of the proposed PDCNET model is contrasted using the six baseline pre-trained classifiers such as EfficientNet-B0 (M1), DenseNet-201 (M2), Vgg-16 (M3), Vgg-19 (M4), Inception-V3 (M5), and MobileNet (M6) in terms of many parameters. The levels of accuracy attained by M1, M2, M3, M4, M5, and M6 are 85.94%, 94.37%, 91.96%, 93.57%, 89.95%, and 94.77%, respectively. The findings showed that the PDCNET model has superior outcomes as compared to baseline models and provides significant assistance to the dentist in the diagnosis of dental disease.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3472012</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-2393-7600</orcidid><orcidid>https://orcid.org/0000-0002-4402-5088</orcidid><orcidid>https://orcid.org/0000-0002-7760-3374</orcidid><orcidid>https://orcid.org/0000-0002-2484-9389</orcidid><orcidid>https://orcid.org/0000-0002-5154-2948</orcidid><orcidid>https://orcid.org/0000-0003-0813-142X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.150147-150168 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10703069 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Computational modeling Computer science Convolutional neural networks Deep learning dental radiographs Dentistry Diagnostic radiography Diseases periodontal disease Solid modeling Teeth tooth decay Training |
title | PDCNET: Deep Convolutional Neural Network for Classification of Periodontal Disease Using Dental Radiographs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PDCNET:%20Deep%20Convolutional%20Neural%20Network%20for%20Classification%20of%20Periodontal%20Disease%20Using%20Dental%20Radiographs&rft.jtitle=IEEE%20access&rft.au=Bilal,%20Anas&rft.date=2024&rft.volume=12&rft.spage=150147&rft.epage=150168&rft.pages=150147-150168&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3472012&rft_dat=%3Cdoaj_ieee_%3Eoai_doaj_org_article_4d15980afd1d4c9296261e3e787dea80%3C/doaj_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10703069&rft_doaj_id=oai_doaj_org_article_4d15980afd1d4c9296261e3e787dea80&rfr_iscdi=true |