PDCNET: Deep Convolutional Neural Network for Classification of Periodontal Disease Using Dental Radiographs

Dental health plays a pivotal role in determining the general health and quality of life of a person. Dental caries is a prevalent health problem in the world; therefore, prompt and effective dental caries treatment is necessary for individuals who require pain relief. Conventional methods of diagno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.150147-150168
Hauptverfasser: Bilal, Anas, Haider Khan, Ali, Almohammadi, Khalid, Al Ghamdi, Sami A., Long, Haixia, Malik, Hassaan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150168
container_issue
container_start_page 150147
container_title IEEE access
container_volume 12
creator Bilal, Anas
Haider Khan, Ali
Almohammadi, Khalid
Al Ghamdi, Sami A.
Long, Haixia
Malik, Hassaan
description Dental health plays a pivotal role in determining the general health and quality of life of a person. Dental caries is a prevalent health problem in the world; therefore, prompt and effective dental caries treatment is necessary for individuals who require pain relief. Conventional methods of diagnosing dental diseases, like visual examination and radiographic testing, depend on qualified medical professionals and can be incredibly labor-intensive and imprecise in their diagnosis. To overcome these challenges, this study designed a deep learning (DL) model for the diagnosis of several dental conditions such as tooth decay, non-periodontal, and periodontal disease. A novel model named periodontal disease classification network (PDCNET) based on convolutional neural network (CNN) has been developed for the identification of periodontal disease using dental radiographs. Additionally, the proposed PDCNET model has been evaluated on two publicly available benchmark datasets of dental caries. To handle the imbalanced classes of the dental caries dataset, this study used the SMOTE TOMEK method to generate new synthetic samples for the minority categories to ensure the periodontal disease dataset is balanced. The proposed PDCNET model acquired a 99.79% AUC, 98.39% recall, 98.39% accuracy, 98.39% precision, and an F1-score of 98.31%. Furthermore, the performance of the proposed PDCNET model is contrasted using the six baseline pre-trained classifiers such as EfficientNet-B0 (M1), DenseNet-201 (M2), Vgg-16 (M3), Vgg-19 (M4), Inception-V3 (M5), and MobileNet (M6) in terms of many parameters. The levels of accuracy attained by M1, M2, M3, M4, M5, and M6 are 85.94%, 94.37%, 91.96%, 93.57%, 89.95%, and 94.77%, respectively. The findings showed that the PDCNET model has superior outcomes as compared to baseline models and provides significant assistance to the dentist in the diagnosis of dental disease.
doi_str_mv 10.1109/ACCESS.2024.3472012
format Article
fullrecord <record><control><sourceid>doaj_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10703069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10703069</ieee_id><doaj_id>oai_doaj_org_article_4d15980afd1d4c9296261e3e787dea80</doaj_id><sourcerecordid>oai_doaj_org_article_4d15980afd1d4c9296261e3e787dea80</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-921485ec70b7acb0dcc6980d0c61b4e6889b92b366b92e1d090e8a7fa5654f063</originalsourceid><addsrcrecordid>eNpNkF9PwjAUxRejiQT5BPqwLwD2z9atvpGBSkKQCDw3XXuHxbmSdmj89hZGDPfl3Jzc88vNiaJ7jEYYI_44LorpajUiiCQjmmQEYXIV9QhmfEhTyq4v9tto4P0OhcmDlWa9qF5OisV0_RRPAPZxYZtvWx9aYxtZxws4uJO0P9Z9xpV1cVFL701llDzexLaKl-CM1bZpw-XEeJAe4o03zTYQT-a71MZundx_-LvoppK1h8FZ-9HmebouXofzt5dZMZ4PFWG4HXKCkzwFlaEyk6pEWinGc6SRYrhMgOU5LzkpKWNBAGvEEeQyq2TK0qRCjPajWcfVVu7E3pkv6X6FlUacDOu2QrrWqBpEonEa2LLSWCeKE87CC0AhyzMNMkeBRTuWctZ7B9U_DyNx7F90_Ytj_-Lcf0g9dCkDABeJDFHEOP0D16mBvQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PDCNET: Deep Convolutional Neural Network for Classification of Periodontal Disease Using Dental Radiographs</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bilal, Anas ; Haider Khan, Ali ; Almohammadi, Khalid ; Al Ghamdi, Sami A. ; Long, Haixia ; Malik, Hassaan</creator><creatorcontrib>Bilal, Anas ; Haider Khan, Ali ; Almohammadi, Khalid ; Al Ghamdi, Sami A. ; Long, Haixia ; Malik, Hassaan</creatorcontrib><description>Dental health plays a pivotal role in determining the general health and quality of life of a person. Dental caries is a prevalent health problem in the world; therefore, prompt and effective dental caries treatment is necessary for individuals who require pain relief. Conventional methods of diagnosing dental diseases, like visual examination and radiographic testing, depend on qualified medical professionals and can be incredibly labor-intensive and imprecise in their diagnosis. To overcome these challenges, this study designed a deep learning (DL) model for the diagnosis of several dental conditions such as tooth decay, non-periodontal, and periodontal disease. A novel model named periodontal disease classification network (PDCNET) based on convolutional neural network (CNN) has been developed for the identification of periodontal disease using dental radiographs. Additionally, the proposed PDCNET model has been evaluated on two publicly available benchmark datasets of dental caries. To handle the imbalanced classes of the dental caries dataset, this study used the SMOTE TOMEK method to generate new synthetic samples for the minority categories to ensure the periodontal disease dataset is balanced. The proposed PDCNET model acquired a 99.79% AUC, 98.39% recall, 98.39% accuracy, 98.39% precision, and an F1-score of 98.31%. Furthermore, the performance of the proposed PDCNET model is contrasted using the six baseline pre-trained classifiers such as EfficientNet-B0 (M1), DenseNet-201 (M2), Vgg-16 (M3), Vgg-19 (M4), Inception-V3 (M5), and MobileNet (M6) in terms of many parameters. The levels of accuracy attained by M1, M2, M3, M4, M5, and M6 are 85.94%, 94.37%, 91.96%, 93.57%, 89.95%, and 94.77%, respectively. The findings showed that the PDCNET model has superior outcomes as compared to baseline models and provides significant assistance to the dentist in the diagnosis of dental disease.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3472012</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Computational modeling ; Computer science ; Convolutional neural networks ; Deep learning ; dental radiographs ; Dentistry ; Diagnostic radiography ; Diseases ; periodontal disease ; Solid modeling ; Teeth ; tooth decay ; Training</subject><ispartof>IEEE access, 2024, Vol.12, p.150147-150168</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-921485ec70b7acb0dcc6980d0c61b4e6889b92b366b92e1d090e8a7fa5654f063</cites><orcidid>0000-0002-2393-7600 ; 0000-0002-4402-5088 ; 0000-0002-7760-3374 ; 0000-0002-2484-9389 ; 0000-0002-5154-2948 ; 0000-0003-0813-142X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10703069$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Bilal, Anas</creatorcontrib><creatorcontrib>Haider Khan, Ali</creatorcontrib><creatorcontrib>Almohammadi, Khalid</creatorcontrib><creatorcontrib>Al Ghamdi, Sami A.</creatorcontrib><creatorcontrib>Long, Haixia</creatorcontrib><creatorcontrib>Malik, Hassaan</creatorcontrib><title>PDCNET: Deep Convolutional Neural Network for Classification of Periodontal Disease Using Dental Radiographs</title><title>IEEE access</title><addtitle>Access</addtitle><description>Dental health plays a pivotal role in determining the general health and quality of life of a person. Dental caries is a prevalent health problem in the world; therefore, prompt and effective dental caries treatment is necessary for individuals who require pain relief. Conventional methods of diagnosing dental diseases, like visual examination and radiographic testing, depend on qualified medical professionals and can be incredibly labor-intensive and imprecise in their diagnosis. To overcome these challenges, this study designed a deep learning (DL) model for the diagnosis of several dental conditions such as tooth decay, non-periodontal, and periodontal disease. A novel model named periodontal disease classification network (PDCNET) based on convolutional neural network (CNN) has been developed for the identification of periodontal disease using dental radiographs. Additionally, the proposed PDCNET model has been evaluated on two publicly available benchmark datasets of dental caries. To handle the imbalanced classes of the dental caries dataset, this study used the SMOTE TOMEK method to generate new synthetic samples for the minority categories to ensure the periodontal disease dataset is balanced. The proposed PDCNET model acquired a 99.79% AUC, 98.39% recall, 98.39% accuracy, 98.39% precision, and an F1-score of 98.31%. Furthermore, the performance of the proposed PDCNET model is contrasted using the six baseline pre-trained classifiers such as EfficientNet-B0 (M1), DenseNet-201 (M2), Vgg-16 (M3), Vgg-19 (M4), Inception-V3 (M5), and MobileNet (M6) in terms of many parameters. The levels of accuracy attained by M1, M2, M3, M4, M5, and M6 are 85.94%, 94.37%, 91.96%, 93.57%, 89.95%, and 94.77%, respectively. The findings showed that the PDCNET model has superior outcomes as compared to baseline models and provides significant assistance to the dentist in the diagnosis of dental disease.</description><subject>Accuracy</subject><subject>Computational modeling</subject><subject>Computer science</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>dental radiographs</subject><subject>Dentistry</subject><subject>Diagnostic radiography</subject><subject>Diseases</subject><subject>periodontal disease</subject><subject>Solid modeling</subject><subject>Teeth</subject><subject>tooth decay</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkF9PwjAUxRejiQT5BPqwLwD2z9atvpGBSkKQCDw3XXuHxbmSdmj89hZGDPfl3Jzc88vNiaJ7jEYYI_44LorpajUiiCQjmmQEYXIV9QhmfEhTyq4v9tto4P0OhcmDlWa9qF5OisV0_RRPAPZxYZtvWx9aYxtZxws4uJO0P9Z9xpV1cVFL701llDzexLaKl-CM1bZpw-XEeJAe4o03zTYQT-a71MZundx_-LvoppK1h8FZ-9HmebouXofzt5dZMZ4PFWG4HXKCkzwFlaEyk6pEWinGc6SRYrhMgOU5LzkpKWNBAGvEEeQyq2TK0qRCjPajWcfVVu7E3pkv6X6FlUacDOu2QrrWqBpEonEa2LLSWCeKE87CC0AhyzMNMkeBRTuWctZ7B9U_DyNx7F90_Ytj_-Lcf0g9dCkDABeJDFHEOP0D16mBvQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Bilal, Anas</creator><creator>Haider Khan, Ali</creator><creator>Almohammadi, Khalid</creator><creator>Al Ghamdi, Sami A.</creator><creator>Long, Haixia</creator><creator>Malik, Hassaan</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2393-7600</orcidid><orcidid>https://orcid.org/0000-0002-4402-5088</orcidid><orcidid>https://orcid.org/0000-0002-7760-3374</orcidid><orcidid>https://orcid.org/0000-0002-2484-9389</orcidid><orcidid>https://orcid.org/0000-0002-5154-2948</orcidid><orcidid>https://orcid.org/0000-0003-0813-142X</orcidid></search><sort><creationdate>2024</creationdate><title>PDCNET: Deep Convolutional Neural Network for Classification of Periodontal Disease Using Dental Radiographs</title><author>Bilal, Anas ; Haider Khan, Ali ; Almohammadi, Khalid ; Al Ghamdi, Sami A. ; Long, Haixia ; Malik, Hassaan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-921485ec70b7acb0dcc6980d0c61b4e6889b92b366b92e1d090e8a7fa5654f063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Computational modeling</topic><topic>Computer science</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>dental radiographs</topic><topic>Dentistry</topic><topic>Diagnostic radiography</topic><topic>Diseases</topic><topic>periodontal disease</topic><topic>Solid modeling</topic><topic>Teeth</topic><topic>tooth decay</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bilal, Anas</creatorcontrib><creatorcontrib>Haider Khan, Ali</creatorcontrib><creatorcontrib>Almohammadi, Khalid</creatorcontrib><creatorcontrib>Al Ghamdi, Sami A.</creatorcontrib><creatorcontrib>Long, Haixia</creatorcontrib><creatorcontrib>Malik, Hassaan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bilal, Anas</au><au>Haider Khan, Ali</au><au>Almohammadi, Khalid</au><au>Al Ghamdi, Sami A.</au><au>Long, Haixia</au><au>Malik, Hassaan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PDCNET: Deep Convolutional Neural Network for Classification of Periodontal Disease Using Dental Radiographs</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>150147</spage><epage>150168</epage><pages>150147-150168</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Dental health plays a pivotal role in determining the general health and quality of life of a person. Dental caries is a prevalent health problem in the world; therefore, prompt and effective dental caries treatment is necessary for individuals who require pain relief. Conventional methods of diagnosing dental diseases, like visual examination and radiographic testing, depend on qualified medical professionals and can be incredibly labor-intensive and imprecise in their diagnosis. To overcome these challenges, this study designed a deep learning (DL) model for the diagnosis of several dental conditions such as tooth decay, non-periodontal, and periodontal disease. A novel model named periodontal disease classification network (PDCNET) based on convolutional neural network (CNN) has been developed for the identification of periodontal disease using dental radiographs. Additionally, the proposed PDCNET model has been evaluated on two publicly available benchmark datasets of dental caries. To handle the imbalanced classes of the dental caries dataset, this study used the SMOTE TOMEK method to generate new synthetic samples for the minority categories to ensure the periodontal disease dataset is balanced. The proposed PDCNET model acquired a 99.79% AUC, 98.39% recall, 98.39% accuracy, 98.39% precision, and an F1-score of 98.31%. Furthermore, the performance of the proposed PDCNET model is contrasted using the six baseline pre-trained classifiers such as EfficientNet-B0 (M1), DenseNet-201 (M2), Vgg-16 (M3), Vgg-19 (M4), Inception-V3 (M5), and MobileNet (M6) in terms of many parameters. The levels of accuracy attained by M1, M2, M3, M4, M5, and M6 are 85.94%, 94.37%, 91.96%, 93.57%, 89.95%, and 94.77%, respectively. The findings showed that the PDCNET model has superior outcomes as compared to baseline models and provides significant assistance to the dentist in the diagnosis of dental disease.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3472012</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-2393-7600</orcidid><orcidid>https://orcid.org/0000-0002-4402-5088</orcidid><orcidid>https://orcid.org/0000-0002-7760-3374</orcidid><orcidid>https://orcid.org/0000-0002-2484-9389</orcidid><orcidid>https://orcid.org/0000-0002-5154-2948</orcidid><orcidid>https://orcid.org/0000-0003-0813-142X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.150147-150168
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10703069
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Computational modeling
Computer science
Convolutional neural networks
Deep learning
dental radiographs
Dentistry
Diagnostic radiography
Diseases
periodontal disease
Solid modeling
Teeth
tooth decay
Training
title PDCNET: Deep Convolutional Neural Network for Classification of Periodontal Disease Using Dental Radiographs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PDCNET:%20Deep%20Convolutional%20Neural%20Network%20for%20Classification%20of%20Periodontal%20Disease%20Using%20Dental%20Radiographs&rft.jtitle=IEEE%20access&rft.au=Bilal,%20Anas&rft.date=2024&rft.volume=12&rft.spage=150147&rft.epage=150168&rft.pages=150147-150168&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3472012&rft_dat=%3Cdoaj_ieee_%3Eoai_doaj_org_article_4d15980afd1d4c9296261e3e787dea80%3C/doaj_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10703069&rft_doaj_id=oai_doaj_org_article_4d15980afd1d4c9296261e3e787dea80&rfr_iscdi=true