Wireless Technology Identification Using Continuous Wavelet Transform and Deep Learning

The identification of wireless technology is vital due to the rising use of wireless devices and the coexistence of multiple technologies. It enables dynamic spectrum access, facilitating efficient spectrum sharing among multiple users and applications within the same frequency bands, optimizing uti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-10, p.1-1
Hauptverfasser: Durga Prasad Varma, M., Yeduri, Sreenivasa Reddy, Yakkati, Rakesh Reddy, Boddu, Anudeep Bhaskar, Cenkeramaddi, Linga Reddy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE sensors journal
container_volume
creator Durga Prasad Varma, M.
Yeduri, Sreenivasa Reddy
Yakkati, Rakesh Reddy
Boddu, Anudeep Bhaskar
Cenkeramaddi, Linga Reddy
description The identification of wireless technology is vital due to the rising use of wireless devices and the coexistence of multiple technologies. It enables dynamic spectrum access, facilitating efficient spectrum sharing among multiple users and applications within the same frequency bands, optimizing utilization, and minimizing interference. This study proposes a novel wireless technology identification approach that utilizes continuous wavelet transform (CWT) and a lightweight Convolutional Neural Network (CNN). First, we use the CWT to generate the spectrogram images from the IQ samples collected from various communication technologies. These spectrogram images are then fed to CNN to identify the coexistence of different communication technologies. The proposed model achieves an accuracy of 90.6%, surpassing the benchmark models. Additionally, our model has a compact size of only 1.04MB, making it notably lighter than other models. We further evaluate the time it takes for our model to make inferences on a Raspberry Pi 5 and other hardware, demonstrating its efficiency and practicality for real-world deployment.
doi_str_mv 10.1109/JSEN.2024.3467681
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10702504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10702504</ieee_id><sourcerecordid>10_1109_JSEN_2024_3467681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c634-cf784a0d5305bd2d701e43afeb13151a22eab5c284f8eefd05fe46ee05b3a33b3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPCQP7A1k4_N9ii1aqXowZV6W7K7kxppk5Jshf57d2kPnuZleN5heAi5BTYBYNP714_524QzLidC5jov4IyMQKkiAy2L8yELlkmhvy7JVUo_jMFUKz0iq5WLuMGUaInNtw-bsD7QRYu-c9Y1pnPB08_k_JrOQr_z-7BPdGV--05Hy2h8siFuqfEtfUTc0SWa6Hv8mlxYs0l4c5pjUj7Ny9lLtnx_XswellmTC5k1VhfSsLZ_TtUtbzUDlMJYrEGAAsM5mlo1vJC2QLQtUxZljtjTwghRizGB49kmhpQi2moX3dbEQwWsGsRUg5hqEFOdxPSdu2PHIeI_XjOumBR_KyBhgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Wireless Technology Identification Using Continuous Wavelet Transform and Deep Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Durga Prasad Varma, M. ; Yeduri, Sreenivasa Reddy ; Yakkati, Rakesh Reddy ; Boddu, Anudeep Bhaskar ; Cenkeramaddi, Linga Reddy</creator><creatorcontrib>Durga Prasad Varma, M. ; Yeduri, Sreenivasa Reddy ; Yakkati, Rakesh Reddy ; Boddu, Anudeep Bhaskar ; Cenkeramaddi, Linga Reddy</creatorcontrib><description>The identification of wireless technology is vital due to the rising use of wireless devices and the coexistence of multiple technologies. It enables dynamic spectrum access, facilitating efficient spectrum sharing among multiple users and applications within the same frequency bands, optimizing utilization, and minimizing interference. This study proposes a novel wireless technology identification approach that utilizes continuous wavelet transform (CWT) and a lightweight Convolutional Neural Network (CNN). First, we use the CWT to generate the spectrogram images from the IQ samples collected from various communication technologies. These spectrogram images are then fed to CNN to identify the coexistence of different communication technologies. The proposed model achieves an accuracy of 90.6%, surpassing the benchmark models. Additionally, our model has a compact size of only 1.04MB, making it notably lighter than other models. We further evaluate the time it takes for our model to make inferences on a Raspberry Pi 5 and other hardware, demonstrating its efficiency and practicality for real-world deployment.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3467681</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Continuous wavelet transform ; Continuous wavelet transforms ; Convolutional neural network ; Convolutional neural networks ; Feature extraction ; IQ samples ; Long Term Evolution ; Raspberry Pi 5 ; Spectrogram ; Time-frequency analysis ; Transforms ; Wireless communication ; Wireless sensor networks ; Wireless technology</subject><ispartof>IEEE sensors journal, 2024-10, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1023-2118 ; 0000-0002-4589-8120 ; 0000-0003-4358-7262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10702504$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10702504$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Durga Prasad Varma, M.</creatorcontrib><creatorcontrib>Yeduri, Sreenivasa Reddy</creatorcontrib><creatorcontrib>Yakkati, Rakesh Reddy</creatorcontrib><creatorcontrib>Boddu, Anudeep Bhaskar</creatorcontrib><creatorcontrib>Cenkeramaddi, Linga Reddy</creatorcontrib><title>Wireless Technology Identification Using Continuous Wavelet Transform and Deep Learning</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>The identification of wireless technology is vital due to the rising use of wireless devices and the coexistence of multiple technologies. It enables dynamic spectrum access, facilitating efficient spectrum sharing among multiple users and applications within the same frequency bands, optimizing utilization, and minimizing interference. This study proposes a novel wireless technology identification approach that utilizes continuous wavelet transform (CWT) and a lightweight Convolutional Neural Network (CNN). First, we use the CWT to generate the spectrogram images from the IQ samples collected from various communication technologies. These spectrogram images are then fed to CNN to identify the coexistence of different communication technologies. The proposed model achieves an accuracy of 90.6%, surpassing the benchmark models. Additionally, our model has a compact size of only 1.04MB, making it notably lighter than other models. We further evaluate the time it takes for our model to make inferences on a Raspberry Pi 5 and other hardware, demonstrating its efficiency and practicality for real-world deployment.</description><subject>Accuracy</subject><subject>Continuous wavelet transform</subject><subject>Continuous wavelet transforms</subject><subject>Convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Feature extraction</subject><subject>IQ samples</subject><subject>Long Term Evolution</subject><subject>Raspberry Pi 5</subject><subject>Spectrogram</subject><subject>Time-frequency analysis</subject><subject>Transforms</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><subject>Wireless technology</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QPCQP7A1k4_N9ii1aqXowZV6W7K7kxppk5Jshf57d2kPnuZleN5heAi5BTYBYNP714_524QzLidC5jov4IyMQKkiAy2L8yELlkmhvy7JVUo_jMFUKz0iq5WLuMGUaInNtw-bsD7QRYu-c9Y1pnPB08_k_JrOQr_z-7BPdGV--05Hy2h8siFuqfEtfUTc0SWa6Hv8mlxYs0l4c5pjUj7Ny9lLtnx_XswellmTC5k1VhfSsLZ_TtUtbzUDlMJYrEGAAsM5mlo1vJC2QLQtUxZljtjTwghRizGB49kmhpQi2moX3dbEQwWsGsRUg5hqEFOdxPSdu2PHIeI_XjOumBR_KyBhgQ</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Durga Prasad Varma, M.</creator><creator>Yeduri, Sreenivasa Reddy</creator><creator>Yakkati, Rakesh Reddy</creator><creator>Boddu, Anudeep Bhaskar</creator><creator>Cenkeramaddi, Linga Reddy</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1023-2118</orcidid><orcidid>https://orcid.org/0000-0002-4589-8120</orcidid><orcidid>https://orcid.org/0000-0003-4358-7262</orcidid></search><sort><creationdate>20241001</creationdate><title>Wireless Technology Identification Using Continuous Wavelet Transform and Deep Learning</title><author>Durga Prasad Varma, M. ; Yeduri, Sreenivasa Reddy ; Yakkati, Rakesh Reddy ; Boddu, Anudeep Bhaskar ; Cenkeramaddi, Linga Reddy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c634-cf784a0d5305bd2d701e43afeb13151a22eab5c284f8eefd05fe46ee05b3a33b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Continuous wavelet transform</topic><topic>Continuous wavelet transforms</topic><topic>Convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Feature extraction</topic><topic>IQ samples</topic><topic>Long Term Evolution</topic><topic>Raspberry Pi 5</topic><topic>Spectrogram</topic><topic>Time-frequency analysis</topic><topic>Transforms</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><topic>Wireless technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Durga Prasad Varma, M.</creatorcontrib><creatorcontrib>Yeduri, Sreenivasa Reddy</creatorcontrib><creatorcontrib>Yakkati, Rakesh Reddy</creatorcontrib><creatorcontrib>Boddu, Anudeep Bhaskar</creatorcontrib><creatorcontrib>Cenkeramaddi, Linga Reddy</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Durga Prasad Varma, M.</au><au>Yeduri, Sreenivasa Reddy</au><au>Yakkati, Rakesh Reddy</au><au>Boddu, Anudeep Bhaskar</au><au>Cenkeramaddi, Linga Reddy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wireless Technology Identification Using Continuous Wavelet Transform and Deep Learning</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-10-01</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>The identification of wireless technology is vital due to the rising use of wireless devices and the coexistence of multiple technologies. It enables dynamic spectrum access, facilitating efficient spectrum sharing among multiple users and applications within the same frequency bands, optimizing utilization, and minimizing interference. This study proposes a novel wireless technology identification approach that utilizes continuous wavelet transform (CWT) and a lightweight Convolutional Neural Network (CNN). First, we use the CWT to generate the spectrogram images from the IQ samples collected from various communication technologies. These spectrogram images are then fed to CNN to identify the coexistence of different communication technologies. The proposed model achieves an accuracy of 90.6%, surpassing the benchmark models. Additionally, our model has a compact size of only 1.04MB, making it notably lighter than other models. We further evaluate the time it takes for our model to make inferences on a Raspberry Pi 5 and other hardware, demonstrating its efficiency and practicality for real-world deployment.</abstract><pub>IEEE</pub><doi>10.1109/JSEN.2024.3467681</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1023-2118</orcidid><orcidid>https://orcid.org/0000-0002-4589-8120</orcidid><orcidid>https://orcid.org/0000-0003-4358-7262</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-10, p.1-1
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_10702504
source IEEE Electronic Library (IEL)
subjects Accuracy
Continuous wavelet transform
Continuous wavelet transforms
Convolutional neural network
Convolutional neural networks
Feature extraction
IQ samples
Long Term Evolution
Raspberry Pi 5
Spectrogram
Time-frequency analysis
Transforms
Wireless communication
Wireless sensor networks
Wireless technology
title Wireless Technology Identification Using Continuous Wavelet Transform and Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wireless%20Technology%20Identification%20Using%20Continuous%20Wavelet%20Transform%20and%20Deep%20Learning&rft.jtitle=IEEE%20sensors%20journal&rft.au=Durga%20Prasad%20Varma,%20M.&rft.date=2024-10-01&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3467681&rft_dat=%3Ccrossref_RIE%3E10_1109_JSEN_2024_3467681%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10702504&rfr_iscdi=true