Wireless Technology Identification Using Continuous Wavelet Transform and Deep Learning
The identification of wireless technology is vital due to the rising use of wireless devices and the coexistence of multiple technologies. It enables dynamic spectrum access, facilitating efficient spectrum sharing among multiple users and applications within the same frequency bands, optimizing uti...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2024-10, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE sensors journal |
container_volume | |
creator | Durga Prasad Varma, M. Yeduri, Sreenivasa Reddy Yakkati, Rakesh Reddy Boddu, Anudeep Bhaskar Cenkeramaddi, Linga Reddy |
description | The identification of wireless technology is vital due to the rising use of wireless devices and the coexistence of multiple technologies. It enables dynamic spectrum access, facilitating efficient spectrum sharing among multiple users and applications within the same frequency bands, optimizing utilization, and minimizing interference. This study proposes a novel wireless technology identification approach that utilizes continuous wavelet transform (CWT) and a lightweight Convolutional Neural Network (CNN). First, we use the CWT to generate the spectrogram images from the IQ samples collected from various communication technologies. These spectrogram images are then fed to CNN to identify the coexistence of different communication technologies. The proposed model achieves an accuracy of 90.6%, surpassing the benchmark models. Additionally, our model has a compact size of only 1.04MB, making it notably lighter than other models. We further evaluate the time it takes for our model to make inferences on a Raspberry Pi 5 and other hardware, demonstrating its efficiency and practicality for real-world deployment. |
doi_str_mv | 10.1109/JSEN.2024.3467681 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10702504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10702504</ieee_id><sourcerecordid>10_1109_JSEN_2024_3467681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c634-cf784a0d5305bd2d701e43afeb13151a22eab5c284f8eefd05fe46ee05b3a33b3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPCQP7A1k4_N9ii1aqXowZV6W7K7kxppk5Jshf57d2kPnuZleN5heAi5BTYBYNP714_524QzLidC5jov4IyMQKkiAy2L8yELlkmhvy7JVUo_jMFUKz0iq5WLuMGUaInNtw-bsD7QRYu-c9Y1pnPB08_k_JrOQr_z-7BPdGV--05Hy2h8siFuqfEtfUTc0SWa6Hv8mlxYs0l4c5pjUj7Ny9lLtnx_XswellmTC5k1VhfSsLZ_TtUtbzUDlMJYrEGAAsM5mlo1vJC2QLQtUxZljtjTwghRizGB49kmhpQi2moX3dbEQwWsGsRUg5hqEFOdxPSdu2PHIeI_XjOumBR_KyBhgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Wireless Technology Identification Using Continuous Wavelet Transform and Deep Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Durga Prasad Varma, M. ; Yeduri, Sreenivasa Reddy ; Yakkati, Rakesh Reddy ; Boddu, Anudeep Bhaskar ; Cenkeramaddi, Linga Reddy</creator><creatorcontrib>Durga Prasad Varma, M. ; Yeduri, Sreenivasa Reddy ; Yakkati, Rakesh Reddy ; Boddu, Anudeep Bhaskar ; Cenkeramaddi, Linga Reddy</creatorcontrib><description>The identification of wireless technology is vital due to the rising use of wireless devices and the coexistence of multiple technologies. It enables dynamic spectrum access, facilitating efficient spectrum sharing among multiple users and applications within the same frequency bands, optimizing utilization, and minimizing interference. This study proposes a novel wireless technology identification approach that utilizes continuous wavelet transform (CWT) and a lightweight Convolutional Neural Network (CNN). First, we use the CWT to generate the spectrogram images from the IQ samples collected from various communication technologies. These spectrogram images are then fed to CNN to identify the coexistence of different communication technologies. The proposed model achieves an accuracy of 90.6%, surpassing the benchmark models. Additionally, our model has a compact size of only 1.04MB, making it notably lighter than other models. We further evaluate the time it takes for our model to make inferences on a Raspberry Pi 5 and other hardware, demonstrating its efficiency and practicality for real-world deployment.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3467681</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Continuous wavelet transform ; Continuous wavelet transforms ; Convolutional neural network ; Convolutional neural networks ; Feature extraction ; IQ samples ; Long Term Evolution ; Raspberry Pi 5 ; Spectrogram ; Time-frequency analysis ; Transforms ; Wireless communication ; Wireless sensor networks ; Wireless technology</subject><ispartof>IEEE sensors journal, 2024-10, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1023-2118 ; 0000-0002-4589-8120 ; 0000-0003-4358-7262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10702504$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10702504$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Durga Prasad Varma, M.</creatorcontrib><creatorcontrib>Yeduri, Sreenivasa Reddy</creatorcontrib><creatorcontrib>Yakkati, Rakesh Reddy</creatorcontrib><creatorcontrib>Boddu, Anudeep Bhaskar</creatorcontrib><creatorcontrib>Cenkeramaddi, Linga Reddy</creatorcontrib><title>Wireless Technology Identification Using Continuous Wavelet Transform and Deep Learning</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>The identification of wireless technology is vital due to the rising use of wireless devices and the coexistence of multiple technologies. It enables dynamic spectrum access, facilitating efficient spectrum sharing among multiple users and applications within the same frequency bands, optimizing utilization, and minimizing interference. This study proposes a novel wireless technology identification approach that utilizes continuous wavelet transform (CWT) and a lightweight Convolutional Neural Network (CNN). First, we use the CWT to generate the spectrogram images from the IQ samples collected from various communication technologies. These spectrogram images are then fed to CNN to identify the coexistence of different communication technologies. The proposed model achieves an accuracy of 90.6%, surpassing the benchmark models. Additionally, our model has a compact size of only 1.04MB, making it notably lighter than other models. We further evaluate the time it takes for our model to make inferences on a Raspberry Pi 5 and other hardware, demonstrating its efficiency and practicality for real-world deployment.</description><subject>Accuracy</subject><subject>Continuous wavelet transform</subject><subject>Continuous wavelet transforms</subject><subject>Convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Feature extraction</subject><subject>IQ samples</subject><subject>Long Term Evolution</subject><subject>Raspberry Pi 5</subject><subject>Spectrogram</subject><subject>Time-frequency analysis</subject><subject>Transforms</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><subject>Wireless technology</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QPCQP7A1k4_N9ii1aqXowZV6W7K7kxppk5Jshf57d2kPnuZleN5heAi5BTYBYNP714_524QzLidC5jov4IyMQKkiAy2L8yELlkmhvy7JVUo_jMFUKz0iq5WLuMGUaInNtw-bsD7QRYu-c9Y1pnPB08_k_JrOQr_z-7BPdGV--05Hy2h8siFuqfEtfUTc0SWa6Hv8mlxYs0l4c5pjUj7Ny9lLtnx_XswellmTC5k1VhfSsLZ_TtUtbzUDlMJYrEGAAsM5mlo1vJC2QLQtUxZljtjTwghRizGB49kmhpQi2moX3dbEQwWsGsRUg5hqEFOdxPSdu2PHIeI_XjOumBR_KyBhgQ</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Durga Prasad Varma, M.</creator><creator>Yeduri, Sreenivasa Reddy</creator><creator>Yakkati, Rakesh Reddy</creator><creator>Boddu, Anudeep Bhaskar</creator><creator>Cenkeramaddi, Linga Reddy</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1023-2118</orcidid><orcidid>https://orcid.org/0000-0002-4589-8120</orcidid><orcidid>https://orcid.org/0000-0003-4358-7262</orcidid></search><sort><creationdate>20241001</creationdate><title>Wireless Technology Identification Using Continuous Wavelet Transform and Deep Learning</title><author>Durga Prasad Varma, M. ; Yeduri, Sreenivasa Reddy ; Yakkati, Rakesh Reddy ; Boddu, Anudeep Bhaskar ; Cenkeramaddi, Linga Reddy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c634-cf784a0d5305bd2d701e43afeb13151a22eab5c284f8eefd05fe46ee05b3a33b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Continuous wavelet transform</topic><topic>Continuous wavelet transforms</topic><topic>Convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Feature extraction</topic><topic>IQ samples</topic><topic>Long Term Evolution</topic><topic>Raspberry Pi 5</topic><topic>Spectrogram</topic><topic>Time-frequency analysis</topic><topic>Transforms</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><topic>Wireless technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Durga Prasad Varma, M.</creatorcontrib><creatorcontrib>Yeduri, Sreenivasa Reddy</creatorcontrib><creatorcontrib>Yakkati, Rakesh Reddy</creatorcontrib><creatorcontrib>Boddu, Anudeep Bhaskar</creatorcontrib><creatorcontrib>Cenkeramaddi, Linga Reddy</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Durga Prasad Varma, M.</au><au>Yeduri, Sreenivasa Reddy</au><au>Yakkati, Rakesh Reddy</au><au>Boddu, Anudeep Bhaskar</au><au>Cenkeramaddi, Linga Reddy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wireless Technology Identification Using Continuous Wavelet Transform and Deep Learning</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-10-01</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>The identification of wireless technology is vital due to the rising use of wireless devices and the coexistence of multiple technologies. It enables dynamic spectrum access, facilitating efficient spectrum sharing among multiple users and applications within the same frequency bands, optimizing utilization, and minimizing interference. This study proposes a novel wireless technology identification approach that utilizes continuous wavelet transform (CWT) and a lightweight Convolutional Neural Network (CNN). First, we use the CWT to generate the spectrogram images from the IQ samples collected from various communication technologies. These spectrogram images are then fed to CNN to identify the coexistence of different communication technologies. The proposed model achieves an accuracy of 90.6%, surpassing the benchmark models. Additionally, our model has a compact size of only 1.04MB, making it notably lighter than other models. We further evaluate the time it takes for our model to make inferences on a Raspberry Pi 5 and other hardware, demonstrating its efficiency and practicality for real-world deployment.</abstract><pub>IEEE</pub><doi>10.1109/JSEN.2024.3467681</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1023-2118</orcidid><orcidid>https://orcid.org/0000-0002-4589-8120</orcidid><orcidid>https://orcid.org/0000-0003-4358-7262</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-10, p.1-1 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_10702504 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Continuous wavelet transform Continuous wavelet transforms Convolutional neural network Convolutional neural networks Feature extraction IQ samples Long Term Evolution Raspberry Pi 5 Spectrogram Time-frequency analysis Transforms Wireless communication Wireless sensor networks Wireless technology |
title | Wireless Technology Identification Using Continuous Wavelet Transform and Deep Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wireless%20Technology%20Identification%20Using%20Continuous%20Wavelet%20Transform%20and%20Deep%20Learning&rft.jtitle=IEEE%20sensors%20journal&rft.au=Durga%20Prasad%20Varma,%20M.&rft.date=2024-10-01&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3467681&rft_dat=%3Ccrossref_RIE%3E10_1109_JSEN_2024_3467681%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10702504&rfr_iscdi=true |