Graph Anomaly Detection via Multiscale Contrastive Self-Supervised Learning From Local to Global
Graph anomaly detection is a challenging task in graph data mining, aiming to recognize unconventional patterns within a network. Recently, there has been increasing attention on graph anomaly detection based on contrastive learning due to its high adaptability to the sample imbalance problem. Howev...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computational social systems 2024-10, p.1-13 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on computational social systems |
container_volume | |
creator | Wang, Xiaofeng Lai, Shuaiming Zhu, Shuailei Chen, Yuntao Lv, Laishui Qi, Yuanyuan |
description | Graph anomaly detection is a challenging task in graph data mining, aiming to recognize unconventional patterns within a network. Recently, there has been increasing attention on graph anomaly detection based on contrastive learning due to its high adaptability to the sample imbalance problem. However, most existing work typically focuses on the contrast of local views while neglecting global comparison information, leading to suboptimal performance. To address this issue, we introduce a new multiscale contrastive self-supervised learning framework for graph anomaly detection (GADMCLG). Our approach incorporates local-level contrasts involving node-node and node- subgraph contrast, and global-level subgraph-subgraph contrast. The former mines localized abnormal information, while the latter is intended to capture global anomalous patterns. Specifically, our proposed subgraph-subgraph contrast adopts the h-order neighbor subgraph sampling instead of augmented subgraphs through edge perturbation. This sampling strategy ensures a comprehensive observation of the neighborhood surrounding the target node, thereby mitigating the introduction of extraneous noise and providing interpretability for the detected results. Furthermore, we incorporate a subgraph centralization technique to reduce the bias caused by the absolute position of subgraphs in the attribute space, which enhances the model's ability to identify anomalies at different scales. Extensive experimental results on six real-world datasets demonstrate the effectiveness of our method and its superiority compared with state-of-the-art approaches. |
doi_str_mv | 10.1109/TCSS.2024.3457161 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10700047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10700047</ieee_id><sourcerecordid>10_1109_TCSS_2024_3457161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-17491a42c1457aa4e1909682dc7f2605a6cc6fd9967d0a843e65eec97ded1f0a3</originalsourceid><addsrcrecordid>eNpNkNFKwzAUhoMoOOYeQPAiL9CZpGmyXI7qNqHiRSd4V4_pqUa6ZiTdYG9vy3bh1fkP_N9_8RFyz9mcc2Yet3lZzgUTcp7KTHPFr8hEpDpNtNTqeszCJEbIj1syi_GXMcZFlmnBJuRzHWD_Q5ed30F7ok_Yo-2d7-jRAX09tL2LFlqkue_6ALF3R6Qltk1SHvYYji5iTQuE0Lnum66C39HCDwDtPV23_gvaO3LTQBtxdrlT8r563uabpHhbv-TLIrFcLvqEa2k4SDF8mQaQyA0zaiFqqxuhWAbKWtXUxihdM1jIFFWGaI2useYNg3RK-HnXBh9jwKbaB7eDcKo4q0ZL1WipGi1VF0sD83BmHCL-6-vBkNTpH2dcZGE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Graph Anomaly Detection via Multiscale Contrastive Self-Supervised Learning From Local to Global</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Xiaofeng ; Lai, Shuaiming ; Zhu, Shuailei ; Chen, Yuntao ; Lv, Laishui ; Qi, Yuanyuan</creator><creatorcontrib>Wang, Xiaofeng ; Lai, Shuaiming ; Zhu, Shuailei ; Chen, Yuntao ; Lv, Laishui ; Qi, Yuanyuan</creatorcontrib><description>Graph anomaly detection is a challenging task in graph data mining, aiming to recognize unconventional patterns within a network. Recently, there has been increasing attention on graph anomaly detection based on contrastive learning due to its high adaptability to the sample imbalance problem. However, most existing work typically focuses on the contrast of local views while neglecting global comparison information, leading to suboptimal performance. To address this issue, we introduce a new multiscale contrastive self-supervised learning framework for graph anomaly detection (GADMCLG). Our approach incorporates local-level contrasts involving node-node and node- subgraph contrast, and global-level subgraph-subgraph contrast. The former mines localized abnormal information, while the latter is intended to capture global anomalous patterns. Specifically, our proposed subgraph-subgraph contrast adopts the h-order neighbor subgraph sampling instead of augmented subgraphs through edge perturbation. This sampling strategy ensures a comprehensive observation of the neighborhood surrounding the target node, thereby mitigating the introduction of extraneous noise and providing interpretability for the detected results. Furthermore, we incorporate a subgraph centralization technique to reduce the bias caused by the absolute position of subgraphs in the attribute space, which enhances the model's ability to identify anomalies at different scales. Extensive experimental results on six real-world datasets demonstrate the effectiveness of our method and its superiority compared with state-of-the-art approaches.</description><identifier>ISSN: 2329-924X</identifier><identifier>EISSN: 2373-7476</identifier><identifier>DOI: 10.1109/TCSS.2024.3457161</identifier><identifier>CODEN: ITCSGL</identifier><language>eng</language><publisher>IEEE</publisher><subject>Anomaly detection ; Contrastive learning ; graph anomaly detection ; Image edge detection ; multiscale framework ; Perturbation methods ; Representation learning ; Reviews ; Semantics ; subgraph centralization ; subgraph sampling ; Topology ; Toy manufacturing industry ; Vectors</subject><ispartof>IEEE transactions on computational social systems, 2024-10, p.1-13</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0003-6826-8337 ; 0000-0002-1953-6281 ; 0009-0002-0908-4151 ; 0000-0003-1742-9586 ; 0009-0008-1461-7219 ; 0000-0002-7941-3320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10700047$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10700047$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Xiaofeng</creatorcontrib><creatorcontrib>Lai, Shuaiming</creatorcontrib><creatorcontrib>Zhu, Shuailei</creatorcontrib><creatorcontrib>Chen, Yuntao</creatorcontrib><creatorcontrib>Lv, Laishui</creatorcontrib><creatorcontrib>Qi, Yuanyuan</creatorcontrib><title>Graph Anomaly Detection via Multiscale Contrastive Self-Supervised Learning From Local to Global</title><title>IEEE transactions on computational social systems</title><addtitle>TCSS</addtitle><description>Graph anomaly detection is a challenging task in graph data mining, aiming to recognize unconventional patterns within a network. Recently, there has been increasing attention on graph anomaly detection based on contrastive learning due to its high adaptability to the sample imbalance problem. However, most existing work typically focuses on the contrast of local views while neglecting global comparison information, leading to suboptimal performance. To address this issue, we introduce a new multiscale contrastive self-supervised learning framework for graph anomaly detection (GADMCLG). Our approach incorporates local-level contrasts involving node-node and node- subgraph contrast, and global-level subgraph-subgraph contrast. The former mines localized abnormal information, while the latter is intended to capture global anomalous patterns. Specifically, our proposed subgraph-subgraph contrast adopts the h-order neighbor subgraph sampling instead of augmented subgraphs through edge perturbation. This sampling strategy ensures a comprehensive observation of the neighborhood surrounding the target node, thereby mitigating the introduction of extraneous noise and providing interpretability for the detected results. Furthermore, we incorporate a subgraph centralization technique to reduce the bias caused by the absolute position of subgraphs in the attribute space, which enhances the model's ability to identify anomalies at different scales. Extensive experimental results on six real-world datasets demonstrate the effectiveness of our method and its superiority compared with state-of-the-art approaches.</description><subject>Anomaly detection</subject><subject>Contrastive learning</subject><subject>graph anomaly detection</subject><subject>Image edge detection</subject><subject>multiscale framework</subject><subject>Perturbation methods</subject><subject>Representation learning</subject><subject>Reviews</subject><subject>Semantics</subject><subject>subgraph centralization</subject><subject>subgraph sampling</subject><subject>Topology</subject><subject>Toy manufacturing industry</subject><subject>Vectors</subject><issn>2329-924X</issn><issn>2373-7476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNFKwzAUhoMoOOYeQPAiL9CZpGmyXI7qNqHiRSd4V4_pqUa6ZiTdYG9vy3bh1fkP_N9_8RFyz9mcc2Yet3lZzgUTcp7KTHPFr8hEpDpNtNTqeszCJEbIj1syi_GXMcZFlmnBJuRzHWD_Q5ed30F7ok_Yo-2d7-jRAX09tL2LFlqkue_6ALF3R6Qltk1SHvYYji5iTQuE0Lnum66C39HCDwDtPV23_gvaO3LTQBtxdrlT8r563uabpHhbv-TLIrFcLvqEa2k4SDF8mQaQyA0zaiFqqxuhWAbKWtXUxihdM1jIFFWGaI2useYNg3RK-HnXBh9jwKbaB7eDcKo4q0ZL1WipGi1VF0sD83BmHCL-6-vBkNTpH2dcZGE</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Wang, Xiaofeng</creator><creator>Lai, Shuaiming</creator><creator>Zhu, Shuailei</creator><creator>Chen, Yuntao</creator><creator>Lv, Laishui</creator><creator>Qi, Yuanyuan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0003-6826-8337</orcidid><orcidid>https://orcid.org/0000-0002-1953-6281</orcidid><orcidid>https://orcid.org/0009-0002-0908-4151</orcidid><orcidid>https://orcid.org/0000-0003-1742-9586</orcidid><orcidid>https://orcid.org/0009-0008-1461-7219</orcidid><orcidid>https://orcid.org/0000-0002-7941-3320</orcidid></search><sort><creationdate>20241001</creationdate><title>Graph Anomaly Detection via Multiscale Contrastive Self-Supervised Learning From Local to Global</title><author>Wang, Xiaofeng ; Lai, Shuaiming ; Zhu, Shuailei ; Chen, Yuntao ; Lv, Laishui ; Qi, Yuanyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-17491a42c1457aa4e1909682dc7f2605a6cc6fd9967d0a843e65eec97ded1f0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anomaly detection</topic><topic>Contrastive learning</topic><topic>graph anomaly detection</topic><topic>Image edge detection</topic><topic>multiscale framework</topic><topic>Perturbation methods</topic><topic>Representation learning</topic><topic>Reviews</topic><topic>Semantics</topic><topic>subgraph centralization</topic><topic>subgraph sampling</topic><topic>Topology</topic><topic>Toy manufacturing industry</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaofeng</creatorcontrib><creatorcontrib>Lai, Shuaiming</creatorcontrib><creatorcontrib>Zhu, Shuailei</creatorcontrib><creatorcontrib>Chen, Yuntao</creatorcontrib><creatorcontrib>Lv, Laishui</creatorcontrib><creatorcontrib>Qi, Yuanyuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on computational social systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Xiaofeng</au><au>Lai, Shuaiming</au><au>Zhu, Shuailei</au><au>Chen, Yuntao</au><au>Lv, Laishui</au><au>Qi, Yuanyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph Anomaly Detection via Multiscale Contrastive Self-Supervised Learning From Local to Global</atitle><jtitle>IEEE transactions on computational social systems</jtitle><stitle>TCSS</stitle><date>2024-10-01</date><risdate>2024</risdate><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>2329-924X</issn><eissn>2373-7476</eissn><coden>ITCSGL</coden><abstract>Graph anomaly detection is a challenging task in graph data mining, aiming to recognize unconventional patterns within a network. Recently, there has been increasing attention on graph anomaly detection based on contrastive learning due to its high adaptability to the sample imbalance problem. However, most existing work typically focuses on the contrast of local views while neglecting global comparison information, leading to suboptimal performance. To address this issue, we introduce a new multiscale contrastive self-supervised learning framework for graph anomaly detection (GADMCLG). Our approach incorporates local-level contrasts involving node-node and node- subgraph contrast, and global-level subgraph-subgraph contrast. The former mines localized abnormal information, while the latter is intended to capture global anomalous patterns. Specifically, our proposed subgraph-subgraph contrast adopts the h-order neighbor subgraph sampling instead of augmented subgraphs through edge perturbation. This sampling strategy ensures a comprehensive observation of the neighborhood surrounding the target node, thereby mitigating the introduction of extraneous noise and providing interpretability for the detected results. Furthermore, we incorporate a subgraph centralization technique to reduce the bias caused by the absolute position of subgraphs in the attribute space, which enhances the model's ability to identify anomalies at different scales. Extensive experimental results on six real-world datasets demonstrate the effectiveness of our method and its superiority compared with state-of-the-art approaches.</abstract><pub>IEEE</pub><doi>10.1109/TCSS.2024.3457161</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0003-6826-8337</orcidid><orcidid>https://orcid.org/0000-0002-1953-6281</orcidid><orcidid>https://orcid.org/0009-0002-0908-4151</orcidid><orcidid>https://orcid.org/0000-0003-1742-9586</orcidid><orcidid>https://orcid.org/0009-0008-1461-7219</orcidid><orcidid>https://orcid.org/0000-0002-7941-3320</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2329-924X |
ispartof | IEEE transactions on computational social systems, 2024-10, p.1-13 |
issn | 2329-924X 2373-7476 |
language | eng |
recordid | cdi_ieee_primary_10700047 |
source | IEEE Electronic Library (IEL) |
subjects | Anomaly detection Contrastive learning graph anomaly detection Image edge detection multiscale framework Perturbation methods Representation learning Reviews Semantics subgraph centralization subgraph sampling Topology Toy manufacturing industry Vectors |
title | Graph Anomaly Detection via Multiscale Contrastive Self-Supervised Learning From Local to Global |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A40%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20Anomaly%20Detection%20via%20Multiscale%20Contrastive%20Self-Supervised%20Learning%20From%20Local%20to%20Global&rft.jtitle=IEEE%20transactions%20on%20computational%20social%20systems&rft.au=Wang,%20Xiaofeng&rft.date=2024-10-01&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=2329-924X&rft.eissn=2373-7476&rft.coden=ITCSGL&rft_id=info:doi/10.1109/TCSS.2024.3457161&rft_dat=%3Ccrossref_RIE%3E10_1109_TCSS_2024_3457161%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10700047&rfr_iscdi=true |