Broadband Filtering Power Divider Employing Hybrid Quarter Circular/Cambered SIW Cavity and MSL Resonators

In this letter, a broadband filtering power divider (FPD) based on a quarter circular/cambered substrate integrated waveguide (QCCSIW) cavity and microstrip line (MSL) resonators is proposed. First, a second-order bandpass filter (BPF) is designed based on the arc-shaped coupling of the QCCSIW. Seco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE microwave and wireless technology letters (Print) 2024-11, Vol.34 (11), p.1247-1250
Hauptverfasser: Sheng, Ke-Long, Wang, Xiang, Qian, Song-Song, Sima, Boyu, Zong, Zhi-Yuan, Wu, Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1250
container_issue 11
container_start_page 1247
container_title IEEE microwave and wireless technology letters (Print)
container_volume 34
creator Sheng, Ke-Long
Wang, Xiang
Qian, Song-Song
Sima, Boyu
Zong, Zhi-Yuan
Wu, Wen
description In this letter, a broadband filtering power divider (FPD) based on a quarter circular/cambered substrate integrated waveguide (QCCSIW) cavity and microstrip line (MSL) resonators is proposed. First, a second-order bandpass filter (BPF) is designed based on the arc-shaped coupling of the QCCSIW. Second, a pair of quarter-wavelength ( \lambda /4) MSL resonators are integrated into the QCCSIW cavity to form a fourth-order asymmetric BPF with a pair of transmission zeros (TZs). Finally, a hybrid QCCSIW and MSL FPD with isolation is investigated. For verification, all BPFs and FPD are simulated, fabricated, and measured. The proposed FPD demonstrates a center frequency of 4.99 GHz, a 3-dB fractional bandwidth (FBW) of 37.11% (1.85 GHz), and an insertion loss (IL) of 0.8 dB. The port isolation is greater than 11 dB within the entire passband. Meanwhile, a pair of TZs are generated at 3.62 and 6.35 GHz respectively. The proposed hybrid QCCSIW and MSL FPD possesses an overall size of 1.73\times 1.74~\lambda _{g} , featuring advantages of broad bandwidth, compact size, and superior selectivity.
doi_str_mv 10.1109/LMWT.2024.3462936
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10697532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10697532</ieee_id><sourcerecordid>3126091071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-55099b3c496453cdc3229307bb8049b035c572743e612441a729c98dfbf080e73</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhYMoWGp_gOBiwHXbeU9mqbG1hRQfrdRdmCQTmZJm6kxSyb83oUVcncvlO-dyTxDcIjhBCMppvNpuJhhiOiGUY0n4RTDAQqCxZGF4-TeLz-tg5P0OQoglxxyxQbB7dFblqapyMDdlrZ2pvsCr_dEOPJmjyTud7Q-lbfv9ok2dycFbo1xHgsi4rCmVm0Zqn2qnc7BebkGkjqZuQZ-4WsfgXXtbqdo6fxNcFar0enTWYfAxn22ixTh-eV5GD_E4Q4LXY8aglCnJqOSUkSzPCO5egiJNQ0hlCgnLmMCCEs0RphQpgWUmw7xICxhCLcgwuD_lHpz9brSvk51tXNWdTAjCHEoEBeoodKIyZ713ukgOzuyVaxMEk77VpG816VtNzq12nruTx2it__FcCkYw-QWbiXIp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126091071</pqid></control><display><type>article</type><title>Broadband Filtering Power Divider Employing Hybrid Quarter Circular/Cambered SIW Cavity and MSL Resonators</title><source>IEEE Electronic Library (IEL)</source><creator>Sheng, Ke-Long ; Wang, Xiang ; Qian, Song-Song ; Sima, Boyu ; Zong, Zhi-Yuan ; Wu, Wen</creator><creatorcontrib>Sheng, Ke-Long ; Wang, Xiang ; Qian, Song-Song ; Sima, Boyu ; Zong, Zhi-Yuan ; Wu, Wen</creatorcontrib><description><![CDATA[In this letter, a broadband filtering power divider (FPD) based on a quarter circular/cambered substrate integrated waveguide (QCCSIW) cavity and microstrip line (MSL) resonators is proposed. First, a second-order bandpass filter (BPF) is designed based on the arc-shaped coupling of the QCCSIW. Second, a pair of quarter-wavelength (<inline-formula> <tex-math notation="LaTeX">\lambda </tex-math></inline-formula>/4) MSL resonators are integrated into the QCCSIW cavity to form a fourth-order asymmetric BPF with a pair of transmission zeros (TZs). Finally, a hybrid QCCSIW and MSL FPD with isolation is investigated. For verification, all BPFs and FPD are simulated, fabricated, and measured. The proposed FPD demonstrates a center frequency of 4.99 GHz, a 3-dB fractional bandwidth (FBW) of 37.11% (1.85 GHz), and an insertion loss (IL) of 0.8 dB. The port isolation is greater than 11 dB within the entire passband. Meanwhile, a pair of TZs are generated at 3.62 and 6.35 GHz respectively. The proposed hybrid QCCSIW and MSL FPD possesses an overall size of <inline-formula> <tex-math notation="LaTeX">1.73\times 1.74~\lambda _{g} </tex-math></inline-formula>, featuring advantages of broad bandwidth, compact size, and superior selectivity.]]></description><identifier>ISSN: 2771-957X</identifier><identifier>EISSN: 2771-9588</identifier><identifier>DOI: 10.1109/LMWT.2024.3462936</identifier><identifier>CODEN: IMWTAZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Band-pass filters ; Bandpass filter (BPF) ; Bandpass filters ; Bandwidth ; Bandwidths ; Broadband ; Cambering ; Cavity resonators ; Couplings ; filtering power divider (FPD) ; Insertion loss ; microstrip line (MSL) ; Microstrip transmission lines ; Passband ; Power dividers ; quarter circular/cambered substrate integrated waveguide (QCCSIW) ; Resistors ; Resonant frequency ; Resonators ; Substrate integrated waveguides ; Substrates ; Topology</subject><ispartof>IEEE microwave and wireless technology letters (Print), 2024-11, Vol.34 (11), p.1247-1250</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-55099b3c496453cdc3229307bb8049b035c572743e612441a729c98dfbf080e73</cites><orcidid>0000-0002-1678-2356 ; 0000-0001-6942-0589 ; 0000-0002-2962-0727 ; 0000-0002-0320-7790 ; 0000-0002-3397-5301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10697532$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10697532$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sheng, Ke-Long</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Qian, Song-Song</creatorcontrib><creatorcontrib>Sima, Boyu</creatorcontrib><creatorcontrib>Zong, Zhi-Yuan</creatorcontrib><creatorcontrib>Wu, Wen</creatorcontrib><title>Broadband Filtering Power Divider Employing Hybrid Quarter Circular/Cambered SIW Cavity and MSL Resonators</title><title>IEEE microwave and wireless technology letters (Print)</title><addtitle>LMWT</addtitle><description><![CDATA[In this letter, a broadband filtering power divider (FPD) based on a quarter circular/cambered substrate integrated waveguide (QCCSIW) cavity and microstrip line (MSL) resonators is proposed. First, a second-order bandpass filter (BPF) is designed based on the arc-shaped coupling of the QCCSIW. Second, a pair of quarter-wavelength (<inline-formula> <tex-math notation="LaTeX">\lambda </tex-math></inline-formula>/4) MSL resonators are integrated into the QCCSIW cavity to form a fourth-order asymmetric BPF with a pair of transmission zeros (TZs). Finally, a hybrid QCCSIW and MSL FPD with isolation is investigated. For verification, all BPFs and FPD are simulated, fabricated, and measured. The proposed FPD demonstrates a center frequency of 4.99 GHz, a 3-dB fractional bandwidth (FBW) of 37.11% (1.85 GHz), and an insertion loss (IL) of 0.8 dB. The port isolation is greater than 11 dB within the entire passband. Meanwhile, a pair of TZs are generated at 3.62 and 6.35 GHz respectively. The proposed hybrid QCCSIW and MSL FPD possesses an overall size of <inline-formula> <tex-math notation="LaTeX">1.73\times 1.74~\lambda _{g} </tex-math></inline-formula>, featuring advantages of broad bandwidth, compact size, and superior selectivity.]]></description><subject>Band-pass filters</subject><subject>Bandpass filter (BPF)</subject><subject>Bandpass filters</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Broadband</subject><subject>Cambering</subject><subject>Cavity resonators</subject><subject>Couplings</subject><subject>filtering power divider (FPD)</subject><subject>Insertion loss</subject><subject>microstrip line (MSL)</subject><subject>Microstrip transmission lines</subject><subject>Passband</subject><subject>Power dividers</subject><subject>quarter circular/cambered substrate integrated waveguide (QCCSIW)</subject><subject>Resistors</subject><subject>Resonant frequency</subject><subject>Resonators</subject><subject>Substrate integrated waveguides</subject><subject>Substrates</subject><subject>Topology</subject><issn>2771-957X</issn><issn>2771-9588</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLw0AUhYMoWGp_gOBiwHXbeU9mqbG1hRQfrdRdmCQTmZJm6kxSyb83oUVcncvlO-dyTxDcIjhBCMppvNpuJhhiOiGUY0n4RTDAQqCxZGF4-TeLz-tg5P0OQoglxxyxQbB7dFblqapyMDdlrZ2pvsCr_dEOPJmjyTud7Q-lbfv9ok2dycFbo1xHgsi4rCmVm0Zqn2qnc7BebkGkjqZuQZ-4WsfgXXtbqdo6fxNcFar0enTWYfAxn22ixTh-eV5GD_E4Q4LXY8aglCnJqOSUkSzPCO5egiJNQ0hlCgnLmMCCEs0RphQpgWUmw7xICxhCLcgwuD_lHpz9brSvk51tXNWdTAjCHEoEBeoodKIyZ713ukgOzuyVaxMEk77VpG816VtNzq12nruTx2it__FcCkYw-QWbiXIp</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Sheng, Ke-Long</creator><creator>Wang, Xiang</creator><creator>Qian, Song-Song</creator><creator>Sima, Boyu</creator><creator>Zong, Zhi-Yuan</creator><creator>Wu, Wen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1678-2356</orcidid><orcidid>https://orcid.org/0000-0001-6942-0589</orcidid><orcidid>https://orcid.org/0000-0002-2962-0727</orcidid><orcidid>https://orcid.org/0000-0002-0320-7790</orcidid><orcidid>https://orcid.org/0000-0002-3397-5301</orcidid></search><sort><creationdate>20241101</creationdate><title>Broadband Filtering Power Divider Employing Hybrid Quarter Circular/Cambered SIW Cavity and MSL Resonators</title><author>Sheng, Ke-Long ; Wang, Xiang ; Qian, Song-Song ; Sima, Boyu ; Zong, Zhi-Yuan ; Wu, Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-55099b3c496453cdc3229307bb8049b035c572743e612441a729c98dfbf080e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Band-pass filters</topic><topic>Bandpass filter (BPF)</topic><topic>Bandpass filters</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Broadband</topic><topic>Cambering</topic><topic>Cavity resonators</topic><topic>Couplings</topic><topic>filtering power divider (FPD)</topic><topic>Insertion loss</topic><topic>microstrip line (MSL)</topic><topic>Microstrip transmission lines</topic><topic>Passband</topic><topic>Power dividers</topic><topic>quarter circular/cambered substrate integrated waveguide (QCCSIW)</topic><topic>Resistors</topic><topic>Resonant frequency</topic><topic>Resonators</topic><topic>Substrate integrated waveguides</topic><topic>Substrates</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheng, Ke-Long</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Qian, Song-Song</creatorcontrib><creatorcontrib>Sima, Boyu</creatorcontrib><creatorcontrib>Zong, Zhi-Yuan</creatorcontrib><creatorcontrib>Wu, Wen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE microwave and wireless technology letters (Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sheng, Ke-Long</au><au>Wang, Xiang</au><au>Qian, Song-Song</au><au>Sima, Boyu</au><au>Zong, Zhi-Yuan</au><au>Wu, Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband Filtering Power Divider Employing Hybrid Quarter Circular/Cambered SIW Cavity and MSL Resonators</atitle><jtitle>IEEE microwave and wireless technology letters (Print)</jtitle><stitle>LMWT</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>34</volume><issue>11</issue><spage>1247</spage><epage>1250</epage><pages>1247-1250</pages><issn>2771-957X</issn><eissn>2771-9588</eissn><coden>IMWTAZ</coden><abstract><![CDATA[In this letter, a broadband filtering power divider (FPD) based on a quarter circular/cambered substrate integrated waveguide (QCCSIW) cavity and microstrip line (MSL) resonators is proposed. First, a second-order bandpass filter (BPF) is designed based on the arc-shaped coupling of the QCCSIW. Second, a pair of quarter-wavelength (<inline-formula> <tex-math notation="LaTeX">\lambda </tex-math></inline-formula>/4) MSL resonators are integrated into the QCCSIW cavity to form a fourth-order asymmetric BPF with a pair of transmission zeros (TZs). Finally, a hybrid QCCSIW and MSL FPD with isolation is investigated. For verification, all BPFs and FPD are simulated, fabricated, and measured. The proposed FPD demonstrates a center frequency of 4.99 GHz, a 3-dB fractional bandwidth (FBW) of 37.11% (1.85 GHz), and an insertion loss (IL) of 0.8 dB. The port isolation is greater than 11 dB within the entire passband. Meanwhile, a pair of TZs are generated at 3.62 and 6.35 GHz respectively. The proposed hybrid QCCSIW and MSL FPD possesses an overall size of <inline-formula> <tex-math notation="LaTeX">1.73\times 1.74~\lambda _{g} </tex-math></inline-formula>, featuring advantages of broad bandwidth, compact size, and superior selectivity.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LMWT.2024.3462936</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-1678-2356</orcidid><orcidid>https://orcid.org/0000-0001-6942-0589</orcidid><orcidid>https://orcid.org/0000-0002-2962-0727</orcidid><orcidid>https://orcid.org/0000-0002-0320-7790</orcidid><orcidid>https://orcid.org/0000-0002-3397-5301</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2771-957X
ispartof IEEE microwave and wireless technology letters (Print), 2024-11, Vol.34 (11), p.1247-1250
issn 2771-957X
2771-9588
language eng
recordid cdi_ieee_primary_10697532
source IEEE Electronic Library (IEL)
subjects Band-pass filters
Bandpass filter (BPF)
Bandpass filters
Bandwidth
Bandwidths
Broadband
Cambering
Cavity resonators
Couplings
filtering power divider (FPD)
Insertion loss
microstrip line (MSL)
Microstrip transmission lines
Passband
Power dividers
quarter circular/cambered substrate integrated waveguide (QCCSIW)
Resistors
Resonant frequency
Resonators
Substrate integrated waveguides
Substrates
Topology
title Broadband Filtering Power Divider Employing Hybrid Quarter Circular/Cambered SIW Cavity and MSL Resonators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A39%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20Filtering%20Power%20Divider%20Employing%20Hybrid%20Quarter%20Circular/Cambered%20SIW%20Cavity%20and%20MSL%20Resonators&rft.jtitle=IEEE%20microwave%20and%20wireless%20technology%20letters%20(Print)&rft.au=Sheng,%20Ke-Long&rft.date=2024-11-01&rft.volume=34&rft.issue=11&rft.spage=1247&rft.epage=1250&rft.pages=1247-1250&rft.issn=2771-957X&rft.eissn=2771-9588&rft.coden=IMWTAZ&rft_id=info:doi/10.1109/LMWT.2024.3462936&rft_dat=%3Cproquest_RIE%3E3126091071%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126091071&rft_id=info:pmid/&rft_ieee_id=10697532&rfr_iscdi=true