Broadband Filtering Power Divider Employing Hybrid Quarter Circular/Cambered SIW Cavity and MSL Resonators
In this letter, a broadband filtering power divider (FPD) based on a quarter circular/cambered substrate integrated waveguide (QCCSIW) cavity and microstrip line (MSL) resonators is proposed. First, a second-order bandpass filter (BPF) is designed based on the arc-shaped coupling of the QCCSIW. Seco...
Gespeichert in:
Veröffentlicht in: | IEEE microwave and wireless technology letters (Print) 2024-11, Vol.34 (11), p.1247-1250 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1250 |
---|---|
container_issue | 11 |
container_start_page | 1247 |
container_title | IEEE microwave and wireless technology letters (Print) |
container_volume | 34 |
creator | Sheng, Ke-Long Wang, Xiang Qian, Song-Song Sima, Boyu Zong, Zhi-Yuan Wu, Wen |
description | In this letter, a broadband filtering power divider (FPD) based on a quarter circular/cambered substrate integrated waveguide (QCCSIW) cavity and microstrip line (MSL) resonators is proposed. First, a second-order bandpass filter (BPF) is designed based on the arc-shaped coupling of the QCCSIW. Second, a pair of quarter-wavelength ( \lambda /4) MSL resonators are integrated into the QCCSIW cavity to form a fourth-order asymmetric BPF with a pair of transmission zeros (TZs). Finally, a hybrid QCCSIW and MSL FPD with isolation is investigated. For verification, all BPFs and FPD are simulated, fabricated, and measured. The proposed FPD demonstrates a center frequency of 4.99 GHz, a 3-dB fractional bandwidth (FBW) of 37.11% (1.85 GHz), and an insertion loss (IL) of 0.8 dB. The port isolation is greater than 11 dB within the entire passband. Meanwhile, a pair of TZs are generated at 3.62 and 6.35 GHz respectively. The proposed hybrid QCCSIW and MSL FPD possesses an overall size of 1.73\times 1.74~\lambda _{g} , featuring advantages of broad bandwidth, compact size, and superior selectivity. |
doi_str_mv | 10.1109/LMWT.2024.3462936 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10697532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10697532</ieee_id><sourcerecordid>3126091071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-55099b3c496453cdc3229307bb8049b035c572743e612441a729c98dfbf080e73</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhYMoWGp_gOBiwHXbeU9mqbG1hRQfrdRdmCQTmZJm6kxSyb83oUVcncvlO-dyTxDcIjhBCMppvNpuJhhiOiGUY0n4RTDAQqCxZGF4-TeLz-tg5P0OQoglxxyxQbB7dFblqapyMDdlrZ2pvsCr_dEOPJmjyTud7Q-lbfv9ok2dycFbo1xHgsi4rCmVm0Zqn2qnc7BebkGkjqZuQZ-4WsfgXXtbqdo6fxNcFar0enTWYfAxn22ixTh-eV5GD_E4Q4LXY8aglCnJqOSUkSzPCO5egiJNQ0hlCgnLmMCCEs0RphQpgWUmw7xICxhCLcgwuD_lHpz9brSvk51tXNWdTAjCHEoEBeoodKIyZ713ukgOzuyVaxMEk77VpG816VtNzq12nruTx2it__FcCkYw-QWbiXIp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126091071</pqid></control><display><type>article</type><title>Broadband Filtering Power Divider Employing Hybrid Quarter Circular/Cambered SIW Cavity and MSL Resonators</title><source>IEEE Electronic Library (IEL)</source><creator>Sheng, Ke-Long ; Wang, Xiang ; Qian, Song-Song ; Sima, Boyu ; Zong, Zhi-Yuan ; Wu, Wen</creator><creatorcontrib>Sheng, Ke-Long ; Wang, Xiang ; Qian, Song-Song ; Sima, Boyu ; Zong, Zhi-Yuan ; Wu, Wen</creatorcontrib><description><![CDATA[In this letter, a broadband filtering power divider (FPD) based on a quarter circular/cambered substrate integrated waveguide (QCCSIW) cavity and microstrip line (MSL) resonators is proposed. First, a second-order bandpass filter (BPF) is designed based on the arc-shaped coupling of the QCCSIW. Second, a pair of quarter-wavelength (<inline-formula> <tex-math notation="LaTeX">\lambda </tex-math></inline-formula>/4) MSL resonators are integrated into the QCCSIW cavity to form a fourth-order asymmetric BPF with a pair of transmission zeros (TZs). Finally, a hybrid QCCSIW and MSL FPD with isolation is investigated. For verification, all BPFs and FPD are simulated, fabricated, and measured. The proposed FPD demonstrates a center frequency of 4.99 GHz, a 3-dB fractional bandwidth (FBW) of 37.11% (1.85 GHz), and an insertion loss (IL) of 0.8 dB. The port isolation is greater than 11 dB within the entire passband. Meanwhile, a pair of TZs are generated at 3.62 and 6.35 GHz respectively. The proposed hybrid QCCSIW and MSL FPD possesses an overall size of <inline-formula> <tex-math notation="LaTeX">1.73\times 1.74~\lambda _{g} </tex-math></inline-formula>, featuring advantages of broad bandwidth, compact size, and superior selectivity.]]></description><identifier>ISSN: 2771-957X</identifier><identifier>EISSN: 2771-9588</identifier><identifier>DOI: 10.1109/LMWT.2024.3462936</identifier><identifier>CODEN: IMWTAZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Band-pass filters ; Bandpass filter (BPF) ; Bandpass filters ; Bandwidth ; Bandwidths ; Broadband ; Cambering ; Cavity resonators ; Couplings ; filtering power divider (FPD) ; Insertion loss ; microstrip line (MSL) ; Microstrip transmission lines ; Passband ; Power dividers ; quarter circular/cambered substrate integrated waveguide (QCCSIW) ; Resistors ; Resonant frequency ; Resonators ; Substrate integrated waveguides ; Substrates ; Topology</subject><ispartof>IEEE microwave and wireless technology letters (Print), 2024-11, Vol.34 (11), p.1247-1250</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-55099b3c496453cdc3229307bb8049b035c572743e612441a729c98dfbf080e73</cites><orcidid>0000-0002-1678-2356 ; 0000-0001-6942-0589 ; 0000-0002-2962-0727 ; 0000-0002-0320-7790 ; 0000-0002-3397-5301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10697532$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10697532$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sheng, Ke-Long</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Qian, Song-Song</creatorcontrib><creatorcontrib>Sima, Boyu</creatorcontrib><creatorcontrib>Zong, Zhi-Yuan</creatorcontrib><creatorcontrib>Wu, Wen</creatorcontrib><title>Broadband Filtering Power Divider Employing Hybrid Quarter Circular/Cambered SIW Cavity and MSL Resonators</title><title>IEEE microwave and wireless technology letters (Print)</title><addtitle>LMWT</addtitle><description><![CDATA[In this letter, a broadband filtering power divider (FPD) based on a quarter circular/cambered substrate integrated waveguide (QCCSIW) cavity and microstrip line (MSL) resonators is proposed. First, a second-order bandpass filter (BPF) is designed based on the arc-shaped coupling of the QCCSIW. Second, a pair of quarter-wavelength (<inline-formula> <tex-math notation="LaTeX">\lambda </tex-math></inline-formula>/4) MSL resonators are integrated into the QCCSIW cavity to form a fourth-order asymmetric BPF with a pair of transmission zeros (TZs). Finally, a hybrid QCCSIW and MSL FPD with isolation is investigated. For verification, all BPFs and FPD are simulated, fabricated, and measured. The proposed FPD demonstrates a center frequency of 4.99 GHz, a 3-dB fractional bandwidth (FBW) of 37.11% (1.85 GHz), and an insertion loss (IL) of 0.8 dB. The port isolation is greater than 11 dB within the entire passband. Meanwhile, a pair of TZs are generated at 3.62 and 6.35 GHz respectively. The proposed hybrid QCCSIW and MSL FPD possesses an overall size of <inline-formula> <tex-math notation="LaTeX">1.73\times 1.74~\lambda _{g} </tex-math></inline-formula>, featuring advantages of broad bandwidth, compact size, and superior selectivity.]]></description><subject>Band-pass filters</subject><subject>Bandpass filter (BPF)</subject><subject>Bandpass filters</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Broadband</subject><subject>Cambering</subject><subject>Cavity resonators</subject><subject>Couplings</subject><subject>filtering power divider (FPD)</subject><subject>Insertion loss</subject><subject>microstrip line (MSL)</subject><subject>Microstrip transmission lines</subject><subject>Passband</subject><subject>Power dividers</subject><subject>quarter circular/cambered substrate integrated waveguide (QCCSIW)</subject><subject>Resistors</subject><subject>Resonant frequency</subject><subject>Resonators</subject><subject>Substrate integrated waveguides</subject><subject>Substrates</subject><subject>Topology</subject><issn>2771-957X</issn><issn>2771-9588</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLw0AUhYMoWGp_gOBiwHXbeU9mqbG1hRQfrdRdmCQTmZJm6kxSyb83oUVcncvlO-dyTxDcIjhBCMppvNpuJhhiOiGUY0n4RTDAQqCxZGF4-TeLz-tg5P0OQoglxxyxQbB7dFblqapyMDdlrZ2pvsCr_dEOPJmjyTud7Q-lbfv9ok2dycFbo1xHgsi4rCmVm0Zqn2qnc7BebkGkjqZuQZ-4WsfgXXtbqdo6fxNcFar0enTWYfAxn22ixTh-eV5GD_E4Q4LXY8aglCnJqOSUkSzPCO5egiJNQ0hlCgnLmMCCEs0RphQpgWUmw7xICxhCLcgwuD_lHpz9brSvk51tXNWdTAjCHEoEBeoodKIyZ713ukgOzuyVaxMEk77VpG816VtNzq12nruTx2it__FcCkYw-QWbiXIp</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Sheng, Ke-Long</creator><creator>Wang, Xiang</creator><creator>Qian, Song-Song</creator><creator>Sima, Boyu</creator><creator>Zong, Zhi-Yuan</creator><creator>Wu, Wen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1678-2356</orcidid><orcidid>https://orcid.org/0000-0001-6942-0589</orcidid><orcidid>https://orcid.org/0000-0002-2962-0727</orcidid><orcidid>https://orcid.org/0000-0002-0320-7790</orcidid><orcidid>https://orcid.org/0000-0002-3397-5301</orcidid></search><sort><creationdate>20241101</creationdate><title>Broadband Filtering Power Divider Employing Hybrid Quarter Circular/Cambered SIW Cavity and MSL Resonators</title><author>Sheng, Ke-Long ; Wang, Xiang ; Qian, Song-Song ; Sima, Boyu ; Zong, Zhi-Yuan ; Wu, Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-55099b3c496453cdc3229307bb8049b035c572743e612441a729c98dfbf080e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Band-pass filters</topic><topic>Bandpass filter (BPF)</topic><topic>Bandpass filters</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Broadband</topic><topic>Cambering</topic><topic>Cavity resonators</topic><topic>Couplings</topic><topic>filtering power divider (FPD)</topic><topic>Insertion loss</topic><topic>microstrip line (MSL)</topic><topic>Microstrip transmission lines</topic><topic>Passband</topic><topic>Power dividers</topic><topic>quarter circular/cambered substrate integrated waveguide (QCCSIW)</topic><topic>Resistors</topic><topic>Resonant frequency</topic><topic>Resonators</topic><topic>Substrate integrated waveguides</topic><topic>Substrates</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheng, Ke-Long</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Qian, Song-Song</creatorcontrib><creatorcontrib>Sima, Boyu</creatorcontrib><creatorcontrib>Zong, Zhi-Yuan</creatorcontrib><creatorcontrib>Wu, Wen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE microwave and wireless technology letters (Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sheng, Ke-Long</au><au>Wang, Xiang</au><au>Qian, Song-Song</au><au>Sima, Boyu</au><au>Zong, Zhi-Yuan</au><au>Wu, Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband Filtering Power Divider Employing Hybrid Quarter Circular/Cambered SIW Cavity and MSL Resonators</atitle><jtitle>IEEE microwave and wireless technology letters (Print)</jtitle><stitle>LMWT</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>34</volume><issue>11</issue><spage>1247</spage><epage>1250</epage><pages>1247-1250</pages><issn>2771-957X</issn><eissn>2771-9588</eissn><coden>IMWTAZ</coden><abstract><![CDATA[In this letter, a broadband filtering power divider (FPD) based on a quarter circular/cambered substrate integrated waveguide (QCCSIW) cavity and microstrip line (MSL) resonators is proposed. First, a second-order bandpass filter (BPF) is designed based on the arc-shaped coupling of the QCCSIW. Second, a pair of quarter-wavelength (<inline-formula> <tex-math notation="LaTeX">\lambda </tex-math></inline-formula>/4) MSL resonators are integrated into the QCCSIW cavity to form a fourth-order asymmetric BPF with a pair of transmission zeros (TZs). Finally, a hybrid QCCSIW and MSL FPD with isolation is investigated. For verification, all BPFs and FPD are simulated, fabricated, and measured. The proposed FPD demonstrates a center frequency of 4.99 GHz, a 3-dB fractional bandwidth (FBW) of 37.11% (1.85 GHz), and an insertion loss (IL) of 0.8 dB. The port isolation is greater than 11 dB within the entire passband. Meanwhile, a pair of TZs are generated at 3.62 and 6.35 GHz respectively. The proposed hybrid QCCSIW and MSL FPD possesses an overall size of <inline-formula> <tex-math notation="LaTeX">1.73\times 1.74~\lambda _{g} </tex-math></inline-formula>, featuring advantages of broad bandwidth, compact size, and superior selectivity.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LMWT.2024.3462936</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-1678-2356</orcidid><orcidid>https://orcid.org/0000-0001-6942-0589</orcidid><orcidid>https://orcid.org/0000-0002-2962-0727</orcidid><orcidid>https://orcid.org/0000-0002-0320-7790</orcidid><orcidid>https://orcid.org/0000-0002-3397-5301</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2771-957X |
ispartof | IEEE microwave and wireless technology letters (Print), 2024-11, Vol.34 (11), p.1247-1250 |
issn | 2771-957X 2771-9588 |
language | eng |
recordid | cdi_ieee_primary_10697532 |
source | IEEE Electronic Library (IEL) |
subjects | Band-pass filters Bandpass filter (BPF) Bandpass filters Bandwidth Bandwidths Broadband Cambering Cavity resonators Couplings filtering power divider (FPD) Insertion loss microstrip line (MSL) Microstrip transmission lines Passband Power dividers quarter circular/cambered substrate integrated waveguide (QCCSIW) Resistors Resonant frequency Resonators Substrate integrated waveguides Substrates Topology |
title | Broadband Filtering Power Divider Employing Hybrid Quarter Circular/Cambered SIW Cavity and MSL Resonators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A39%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20Filtering%20Power%20Divider%20Employing%20Hybrid%20Quarter%20Circular/Cambered%20SIW%20Cavity%20and%20MSL%20Resonators&rft.jtitle=IEEE%20microwave%20and%20wireless%20technology%20letters%20(Print)&rft.au=Sheng,%20Ke-Long&rft.date=2024-11-01&rft.volume=34&rft.issue=11&rft.spage=1247&rft.epage=1250&rft.pages=1247-1250&rft.issn=2771-957X&rft.eissn=2771-9588&rft.coden=IMWTAZ&rft_id=info:doi/10.1109/LMWT.2024.3462936&rft_dat=%3Cproquest_RIE%3E3126091071%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126091071&rft_id=info:pmid/&rft_ieee_id=10697532&rfr_iscdi=true |