A Q-learning Novelty Search Strategy for Evaluating Robustness of Deep Reinforcement Learning in Open-world Environments
Despite substantial progress in deep reinforcement learning (DRL), a systematic characterization of DRL agents' robustness to unexpected events in the environment is relatively under-studied. Such unexpected events ("novelties"), especially those that are more structural than parametr...
Gespeichert in:
Veröffentlicht in: | IEEE intelligent systems 2024-09, p.1-10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!