A Q-learning Novelty Search Strategy for Evaluating Robustness of Deep Reinforcement Learning in Open-world Environments
Despite substantial progress in deep reinforcement learning (DRL), a systematic characterization of DRL agents' robustness to unexpected events in the environment is relatively under-studied. Such unexpected events ("novelties"), especially those that are more structural than parametr...
Gespeichert in:
Veröffentlicht in: | IEEE intelligent systems 2024-09, p.1-10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE intelligent systems |
container_volume | |
creator | Islam, Shafkat Chiu, Min-Hsueh Bonjour, Trevor de Oliveira, Ruy Bhargava, Bharat Kejriwal, Mayank |
description | Despite substantial progress in deep reinforcement learning (DRL), a systematic characterization of DRL agents' robustness to unexpected events in the environment is relatively under-studied. Such unexpected events ("novelties"), especially those that are more structural than parametric, may significantly deteriorate the performance of DRL agents, leading them to be unfit for open-world environments and applications. However, not all novelties affect an agent's performance equally. Unfortunately, even with reasonable and constrained definitions of the problem, the space of all novelties can be (at least) exponential. Hence, an effective search strategy is required to find novelties that can adversely affect the agent. This paper presents a formalism for this problem and proposes a deep Q-learning-based novelty-search strategy that efficiently and systematically finds candidate (potentially complex) novelties with significant negative impact on a DRL agent. We conduct a detailed set of experiments in a stochastic multi-agent game environment (Monopoly) with complex decision-making properties. |
doi_str_mv | 10.1109/MIS.2024.3469574 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10697140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10697140</ieee_id><sourcerecordid>10_1109_MIS_2024_3469574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620-9624de604da2c23b47d3c3753d7c3b311750cf7db919900563b6cccda1242a9e3</originalsourceid><addsrcrecordid>eNpNkE1PAjEURRujiYjuXbjoHxjs17R2SRCVBCUC-0mnfYNjhpa0I8q_dyZg4urdvJx7FwehW0pGlBJ9_zpbjRhhYsSF1LkSZ2hAtaAZZVqcdznvs1TsEl2l9EkI44Q-DNDPGL9nDZjoa7_Bb2EPTXvAq-5hP_CqjaaFzQFXIeLp3jRfpu2xZSi_UushJRwq_Aiww0uofUdZ2IJv8fxvsPZ4sQOffYfYODz1-zoG3yPpGl1Upklwc7pDtH6aricv2XzxPJuM55mVjGRaMuFAEuEMs4yXQjluucq5U5aXnFKVE1spV2qqNSG55KW01jpDmWBGAx8icpy1MaQUoSp2sd6aeCgoKXpxRSeu6MUVJ3Fd5e5YqQHgHy61ooLwX3Qta3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Q-learning Novelty Search Strategy for Evaluating Robustness of Deep Reinforcement Learning in Open-world Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Islam, Shafkat ; Chiu, Min-Hsueh ; Bonjour, Trevor ; de Oliveira, Ruy ; Bhargava, Bharat ; Kejriwal, Mayank</creator><creatorcontrib>Islam, Shafkat ; Chiu, Min-Hsueh ; Bonjour, Trevor ; de Oliveira, Ruy ; Bhargava, Bharat ; Kejriwal, Mayank</creatorcontrib><description>Despite substantial progress in deep reinforcement learning (DRL), a systematic characterization of DRL agents' robustness to unexpected events in the environment is relatively under-studied. Such unexpected events ("novelties"), especially those that are more structural than parametric, may significantly deteriorate the performance of DRL agents, leading them to be unfit for open-world environments and applications. However, not all novelties affect an agent's performance equally. Unfortunately, even with reasonable and constrained definitions of the problem, the space of all novelties can be (at least) exponential. Hence, an effective search strategy is required to find novelties that can adversely affect the agent. This paper presents a formalism for this problem and proposes a deep Q-learning-based novelty-search strategy that efficiently and systematically finds candidate (potentially complex) novelties with significant negative impact on a DRL agent. We conduct a detailed set of experiments in a stochastic multi-agent game environment (Monopoly) with complex decision-making properties.</description><identifier>ISSN: 1541-1672</identifier><identifier>EISSN: 1941-1294</identifier><identifier>DOI: 10.1109/MIS.2024.3469574</identifier><identifier>CODEN: IISYF7</identifier><language>eng</language><publisher>IEEE</publisher><subject>Deep reinforcement learning ; Games ; Heating systems ; Intelligent systems ; Monopoly ; Robustness ; Search problems ; Systematics ; Terminology ; Training</subject><ispartof>IEEE intelligent systems, 2024-09, p.1-10</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10697140$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10697140$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Islam, Shafkat</creatorcontrib><creatorcontrib>Chiu, Min-Hsueh</creatorcontrib><creatorcontrib>Bonjour, Trevor</creatorcontrib><creatorcontrib>de Oliveira, Ruy</creatorcontrib><creatorcontrib>Bhargava, Bharat</creatorcontrib><creatorcontrib>Kejriwal, Mayank</creatorcontrib><title>A Q-learning Novelty Search Strategy for Evaluating Robustness of Deep Reinforcement Learning in Open-world Environments</title><title>IEEE intelligent systems</title><addtitle>MIS</addtitle><description>Despite substantial progress in deep reinforcement learning (DRL), a systematic characterization of DRL agents' robustness to unexpected events in the environment is relatively under-studied. Such unexpected events ("novelties"), especially those that are more structural than parametric, may significantly deteriorate the performance of DRL agents, leading them to be unfit for open-world environments and applications. However, not all novelties affect an agent's performance equally. Unfortunately, even with reasonable and constrained definitions of the problem, the space of all novelties can be (at least) exponential. Hence, an effective search strategy is required to find novelties that can adversely affect the agent. This paper presents a formalism for this problem and proposes a deep Q-learning-based novelty-search strategy that efficiently and systematically finds candidate (potentially complex) novelties with significant negative impact on a DRL agent. We conduct a detailed set of experiments in a stochastic multi-agent game environment (Monopoly) with complex decision-making properties.</description><subject>Deep reinforcement learning</subject><subject>Games</subject><subject>Heating systems</subject><subject>Intelligent systems</subject><subject>Monopoly</subject><subject>Robustness</subject><subject>Search problems</subject><subject>Systematics</subject><subject>Terminology</subject><subject>Training</subject><issn>1541-1672</issn><issn>1941-1294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEURRujiYjuXbjoHxjs17R2SRCVBCUC-0mnfYNjhpa0I8q_dyZg4urdvJx7FwehW0pGlBJ9_zpbjRhhYsSF1LkSZ2hAtaAZZVqcdznvs1TsEl2l9EkI44Q-DNDPGL9nDZjoa7_Bb2EPTXvAq-5hP_CqjaaFzQFXIeLp3jRfpu2xZSi_UushJRwq_Aiww0uofUdZ2IJv8fxvsPZ4sQOffYfYODz1-zoG3yPpGl1Upklwc7pDtH6aricv2XzxPJuM55mVjGRaMuFAEuEMs4yXQjluucq5U5aXnFKVE1spV2qqNSG55KW01jpDmWBGAx8icpy1MaQUoSp2sd6aeCgoKXpxRSeu6MUVJ3Fd5e5YqQHgHy61ooLwX3Qta3w</recordid><startdate>20240926</startdate><enddate>20240926</enddate><creator>Islam, Shafkat</creator><creator>Chiu, Min-Hsueh</creator><creator>Bonjour, Trevor</creator><creator>de Oliveira, Ruy</creator><creator>Bhargava, Bharat</creator><creator>Kejriwal, Mayank</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240926</creationdate><title>A Q-learning Novelty Search Strategy for Evaluating Robustness of Deep Reinforcement Learning in Open-world Environments</title><author>Islam, Shafkat ; Chiu, Min-Hsueh ; Bonjour, Trevor ; de Oliveira, Ruy ; Bhargava, Bharat ; Kejriwal, Mayank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620-9624de604da2c23b47d3c3753d7c3b311750cf7db919900563b6cccda1242a9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep reinforcement learning</topic><topic>Games</topic><topic>Heating systems</topic><topic>Intelligent systems</topic><topic>Monopoly</topic><topic>Robustness</topic><topic>Search problems</topic><topic>Systematics</topic><topic>Terminology</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Islam, Shafkat</creatorcontrib><creatorcontrib>Chiu, Min-Hsueh</creatorcontrib><creatorcontrib>Bonjour, Trevor</creatorcontrib><creatorcontrib>de Oliveira, Ruy</creatorcontrib><creatorcontrib>Bhargava, Bharat</creatorcontrib><creatorcontrib>Kejriwal, Mayank</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Islam, Shafkat</au><au>Chiu, Min-Hsueh</au><au>Bonjour, Trevor</au><au>de Oliveira, Ruy</au><au>Bhargava, Bharat</au><au>Kejriwal, Mayank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Q-learning Novelty Search Strategy for Evaluating Robustness of Deep Reinforcement Learning in Open-world Environments</atitle><jtitle>IEEE intelligent systems</jtitle><stitle>MIS</stitle><date>2024-09-26</date><risdate>2024</risdate><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1541-1672</issn><eissn>1941-1294</eissn><coden>IISYF7</coden><abstract>Despite substantial progress in deep reinforcement learning (DRL), a systematic characterization of DRL agents' robustness to unexpected events in the environment is relatively under-studied. Such unexpected events ("novelties"), especially those that are more structural than parametric, may significantly deteriorate the performance of DRL agents, leading them to be unfit for open-world environments and applications. However, not all novelties affect an agent's performance equally. Unfortunately, even with reasonable and constrained definitions of the problem, the space of all novelties can be (at least) exponential. Hence, an effective search strategy is required to find novelties that can adversely affect the agent. This paper presents a formalism for this problem and proposes a deep Q-learning-based novelty-search strategy that efficiently and systematically finds candidate (potentially complex) novelties with significant negative impact on a DRL agent. We conduct a detailed set of experiments in a stochastic multi-agent game environment (Monopoly) with complex decision-making properties.</abstract><pub>IEEE</pub><doi>10.1109/MIS.2024.3469574</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1541-1672 |
ispartof | IEEE intelligent systems, 2024-09, p.1-10 |
issn | 1541-1672 1941-1294 |
language | eng |
recordid | cdi_ieee_primary_10697140 |
source | IEEE Electronic Library (IEL) |
subjects | Deep reinforcement learning Games Heating systems Intelligent systems Monopoly Robustness Search problems Systematics Terminology Training |
title | A Q-learning Novelty Search Strategy for Evaluating Robustness of Deep Reinforcement Learning in Open-world Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A57%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Q-learning%20Novelty%20Search%20Strategy%20for%20Evaluating%20Robustness%20of%20Deep%20Reinforcement%20Learning%20in%20Open-world%20Environments&rft.jtitle=IEEE%20intelligent%20systems&rft.au=Islam,%20Shafkat&rft.date=2024-09-26&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1541-1672&rft.eissn=1941-1294&rft.coden=IISYF7&rft_id=info:doi/10.1109/MIS.2024.3469574&rft_dat=%3Ccrossref_RIE%3E10_1109_MIS_2024_3469574%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10697140&rfr_iscdi=true |