A Q-learning Novelty Search Strategy for Evaluating Robustness of Deep Reinforcement Learning in Open-world Environments

Despite substantial progress in deep reinforcement learning (DRL), a systematic characterization of DRL agents' robustness to unexpected events in the environment is relatively under-studied. Such unexpected events ("novelties"), especially those that are more structural than parametr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE intelligent systems 2024-09, p.1-10
Hauptverfasser: Islam, Shafkat, Chiu, Min-Hsueh, Bonjour, Trevor, de Oliveira, Ruy, Bhargava, Bharat, Kejriwal, Mayank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title IEEE intelligent systems
container_volume
creator Islam, Shafkat
Chiu, Min-Hsueh
Bonjour, Trevor
de Oliveira, Ruy
Bhargava, Bharat
Kejriwal, Mayank
description Despite substantial progress in deep reinforcement learning (DRL), a systematic characterization of DRL agents' robustness to unexpected events in the environment is relatively under-studied. Such unexpected events ("novelties"), especially those that are more structural than parametric, may significantly deteriorate the performance of DRL agents, leading them to be unfit for open-world environments and applications. However, not all novelties affect an agent's performance equally. Unfortunately, even with reasonable and constrained definitions of the problem, the space of all novelties can be (at least) exponential. Hence, an effective search strategy is required to find novelties that can adversely affect the agent. This paper presents a formalism for this problem and proposes a deep Q-learning-based novelty-search strategy that efficiently and systematically finds candidate (potentially complex) novelties with significant negative impact on a DRL agent. We conduct a detailed set of experiments in a stochastic multi-agent game environment (Monopoly) with complex decision-making properties.
doi_str_mv 10.1109/MIS.2024.3469574
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10697140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10697140</ieee_id><sourcerecordid>10_1109_MIS_2024_3469574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620-9624de604da2c23b47d3c3753d7c3b311750cf7db919900563b6cccda1242a9e3</originalsourceid><addsrcrecordid>eNpNkE1PAjEURRujiYjuXbjoHxjs17R2SRCVBCUC-0mnfYNjhpa0I8q_dyZg4urdvJx7FwehW0pGlBJ9_zpbjRhhYsSF1LkSZ2hAtaAZZVqcdznvs1TsEl2l9EkI44Q-DNDPGL9nDZjoa7_Bb2EPTXvAq-5hP_CqjaaFzQFXIeLp3jRfpu2xZSi_UushJRwq_Aiww0uofUdZ2IJv8fxvsPZ4sQOffYfYODz1-zoG3yPpGl1Upklwc7pDtH6aricv2XzxPJuM55mVjGRaMuFAEuEMs4yXQjluucq5U5aXnFKVE1spV2qqNSG55KW01jpDmWBGAx8icpy1MaQUoSp2sd6aeCgoKXpxRSeu6MUVJ3Fd5e5YqQHgHy61ooLwX3Qta3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Q-learning Novelty Search Strategy for Evaluating Robustness of Deep Reinforcement Learning in Open-world Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Islam, Shafkat ; Chiu, Min-Hsueh ; Bonjour, Trevor ; de Oliveira, Ruy ; Bhargava, Bharat ; Kejriwal, Mayank</creator><creatorcontrib>Islam, Shafkat ; Chiu, Min-Hsueh ; Bonjour, Trevor ; de Oliveira, Ruy ; Bhargava, Bharat ; Kejriwal, Mayank</creatorcontrib><description>Despite substantial progress in deep reinforcement learning (DRL), a systematic characterization of DRL agents' robustness to unexpected events in the environment is relatively under-studied. Such unexpected events ("novelties"), especially those that are more structural than parametric, may significantly deteriorate the performance of DRL agents, leading them to be unfit for open-world environments and applications. However, not all novelties affect an agent's performance equally. Unfortunately, even with reasonable and constrained definitions of the problem, the space of all novelties can be (at least) exponential. Hence, an effective search strategy is required to find novelties that can adversely affect the agent. This paper presents a formalism for this problem and proposes a deep Q-learning-based novelty-search strategy that efficiently and systematically finds candidate (potentially complex) novelties with significant negative impact on a DRL agent. We conduct a detailed set of experiments in a stochastic multi-agent game environment (Monopoly) with complex decision-making properties.</description><identifier>ISSN: 1541-1672</identifier><identifier>EISSN: 1941-1294</identifier><identifier>DOI: 10.1109/MIS.2024.3469574</identifier><identifier>CODEN: IISYF7</identifier><language>eng</language><publisher>IEEE</publisher><subject>Deep reinforcement learning ; Games ; Heating systems ; Intelligent systems ; Monopoly ; Robustness ; Search problems ; Systematics ; Terminology ; Training</subject><ispartof>IEEE intelligent systems, 2024-09, p.1-10</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10697140$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10697140$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Islam, Shafkat</creatorcontrib><creatorcontrib>Chiu, Min-Hsueh</creatorcontrib><creatorcontrib>Bonjour, Trevor</creatorcontrib><creatorcontrib>de Oliveira, Ruy</creatorcontrib><creatorcontrib>Bhargava, Bharat</creatorcontrib><creatorcontrib>Kejriwal, Mayank</creatorcontrib><title>A Q-learning Novelty Search Strategy for Evaluating Robustness of Deep Reinforcement Learning in Open-world Environments</title><title>IEEE intelligent systems</title><addtitle>MIS</addtitle><description>Despite substantial progress in deep reinforcement learning (DRL), a systematic characterization of DRL agents' robustness to unexpected events in the environment is relatively under-studied. Such unexpected events ("novelties"), especially those that are more structural than parametric, may significantly deteriorate the performance of DRL agents, leading them to be unfit for open-world environments and applications. However, not all novelties affect an agent's performance equally. Unfortunately, even with reasonable and constrained definitions of the problem, the space of all novelties can be (at least) exponential. Hence, an effective search strategy is required to find novelties that can adversely affect the agent. This paper presents a formalism for this problem and proposes a deep Q-learning-based novelty-search strategy that efficiently and systematically finds candidate (potentially complex) novelties with significant negative impact on a DRL agent. We conduct a detailed set of experiments in a stochastic multi-agent game environment (Monopoly) with complex decision-making properties.</description><subject>Deep reinforcement learning</subject><subject>Games</subject><subject>Heating systems</subject><subject>Intelligent systems</subject><subject>Monopoly</subject><subject>Robustness</subject><subject>Search problems</subject><subject>Systematics</subject><subject>Terminology</subject><subject>Training</subject><issn>1541-1672</issn><issn>1941-1294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEURRujiYjuXbjoHxjs17R2SRCVBCUC-0mnfYNjhpa0I8q_dyZg4urdvJx7FwehW0pGlBJ9_zpbjRhhYsSF1LkSZ2hAtaAZZVqcdznvs1TsEl2l9EkI44Q-DNDPGL9nDZjoa7_Bb2EPTXvAq-5hP_CqjaaFzQFXIeLp3jRfpu2xZSi_UushJRwq_Aiww0uofUdZ2IJv8fxvsPZ4sQOffYfYODz1-zoG3yPpGl1Upklwc7pDtH6aricv2XzxPJuM55mVjGRaMuFAEuEMs4yXQjluucq5U5aXnFKVE1spV2qqNSG55KW01jpDmWBGAx8icpy1MaQUoSp2sd6aeCgoKXpxRSeu6MUVJ3Fd5e5YqQHgHy61ooLwX3Qta3w</recordid><startdate>20240926</startdate><enddate>20240926</enddate><creator>Islam, Shafkat</creator><creator>Chiu, Min-Hsueh</creator><creator>Bonjour, Trevor</creator><creator>de Oliveira, Ruy</creator><creator>Bhargava, Bharat</creator><creator>Kejriwal, Mayank</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240926</creationdate><title>A Q-learning Novelty Search Strategy for Evaluating Robustness of Deep Reinforcement Learning in Open-world Environments</title><author>Islam, Shafkat ; Chiu, Min-Hsueh ; Bonjour, Trevor ; de Oliveira, Ruy ; Bhargava, Bharat ; Kejriwal, Mayank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620-9624de604da2c23b47d3c3753d7c3b311750cf7db919900563b6cccda1242a9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep reinforcement learning</topic><topic>Games</topic><topic>Heating systems</topic><topic>Intelligent systems</topic><topic>Monopoly</topic><topic>Robustness</topic><topic>Search problems</topic><topic>Systematics</topic><topic>Terminology</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Islam, Shafkat</creatorcontrib><creatorcontrib>Chiu, Min-Hsueh</creatorcontrib><creatorcontrib>Bonjour, Trevor</creatorcontrib><creatorcontrib>de Oliveira, Ruy</creatorcontrib><creatorcontrib>Bhargava, Bharat</creatorcontrib><creatorcontrib>Kejriwal, Mayank</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Islam, Shafkat</au><au>Chiu, Min-Hsueh</au><au>Bonjour, Trevor</au><au>de Oliveira, Ruy</au><au>Bhargava, Bharat</au><au>Kejriwal, Mayank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Q-learning Novelty Search Strategy for Evaluating Robustness of Deep Reinforcement Learning in Open-world Environments</atitle><jtitle>IEEE intelligent systems</jtitle><stitle>MIS</stitle><date>2024-09-26</date><risdate>2024</risdate><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1541-1672</issn><eissn>1941-1294</eissn><coden>IISYF7</coden><abstract>Despite substantial progress in deep reinforcement learning (DRL), a systematic characterization of DRL agents' robustness to unexpected events in the environment is relatively under-studied. Such unexpected events ("novelties"), especially those that are more structural than parametric, may significantly deteriorate the performance of DRL agents, leading them to be unfit for open-world environments and applications. However, not all novelties affect an agent's performance equally. Unfortunately, even with reasonable and constrained definitions of the problem, the space of all novelties can be (at least) exponential. Hence, an effective search strategy is required to find novelties that can adversely affect the agent. This paper presents a formalism for this problem and proposes a deep Q-learning-based novelty-search strategy that efficiently and systematically finds candidate (potentially complex) novelties with significant negative impact on a DRL agent. We conduct a detailed set of experiments in a stochastic multi-agent game environment (Monopoly) with complex decision-making properties.</abstract><pub>IEEE</pub><doi>10.1109/MIS.2024.3469574</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1541-1672
ispartof IEEE intelligent systems, 2024-09, p.1-10
issn 1541-1672
1941-1294
language eng
recordid cdi_ieee_primary_10697140
source IEEE Electronic Library (IEL)
subjects Deep reinforcement learning
Games
Heating systems
Intelligent systems
Monopoly
Robustness
Search problems
Systematics
Terminology
Training
title A Q-learning Novelty Search Strategy for Evaluating Robustness of Deep Reinforcement Learning in Open-world Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A57%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Q-learning%20Novelty%20Search%20Strategy%20for%20Evaluating%20Robustness%20of%20Deep%20Reinforcement%20Learning%20in%20Open-world%20Environments&rft.jtitle=IEEE%20intelligent%20systems&rft.au=Islam,%20Shafkat&rft.date=2024-09-26&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1541-1672&rft.eissn=1941-1294&rft.coden=IISYF7&rft_id=info:doi/10.1109/MIS.2024.3469574&rft_dat=%3Ccrossref_RIE%3E10_1109_MIS_2024_3469574%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10697140&rfr_iscdi=true