Privacy-Preserving Probabilistic Data Encoding for IoT Data Analysis

The widespread integration of the Internet of Things (IoT) is crucial in advancing sustainable development. IoT service providers actively collect user data for analysis using sophisticated Deep Learning (DL) algorithms. This enables the extraction of valuable insights for business intelligence and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information forensics and security 2024, Vol.19, p.9173-9187
Hauptverfasser: Zaman, Zakia, Xue, Wanli, Gauravaram, Praveen, Hu, Wen, Jiang, Jiaojiao, Jha, Sanjay K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9187
container_issue
container_start_page 9173
container_title IEEE transactions on information forensics and security
container_volume 19
creator Zaman, Zakia
Xue, Wanli
Gauravaram, Praveen
Hu, Wen
Jiang, Jiaojiao
Jha, Sanjay K.
description The widespread integration of the Internet of Things (IoT) is crucial in advancing sustainable development. IoT service providers actively collect user data for analysis using sophisticated Deep Learning (DL) algorithms. This enables the extraction of valuable insights for business intelligence and improving service quality. However, as these datasets contain sensitive personal information, there is a risk of privacy breaches when DL models are employed. This vulnerability may result in Membership Inference Attacks (MIA), potentially leading to the unauthorized disclosure of highly sensitive data. Therefore, developing an efficient and privacy-preserving data analysis system for IoT is imperative. Recent research has highlighted the effectiveness of utilizing Bloom Filter (BF)-encoding in conjunction with Differential Privacy (DP) for safeguarding privacy during data analysis. Given its attributes of low complexity and high utility, this approach proves effective, particularly in resource-constrained IoT domains. With this in mind, we propose a novel framework for privacy-preserving IoT data analysis based on BF-encoded data. Our research introduces an innovative BF-encoding technique combined with Local Differential Privacy (LDP), capable of efficiently encoding various types of IoT data (such as facial images and smart-meter data) while maintaining privacy when integrated into DL algorithms for downstream analysis. Experimental results demonstrate that our BF-encoded data surpasses the utility of standard BF-encoded data when utilized in DL algorithms for downstream tasks, showcasing an approximate 30% improvement in classification accuracy. Furthermore, we assess the privacy of these DL models against MIA, revealing that attackers can only make random guesses with an accuracy of approximately 50%.
doi_str_mv 10.1109/TIFS.2024.3468150
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10693594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10693594</ieee_id><sourcerecordid>10_1109_TIFS_2024_3468150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c191t-f09d7707d8b586aa0bf617901fb60ebc65a793df18d17224d595b80af2f4677a3</originalsourceid><addsrcrecordid>eNpNkNtKxDAQhoMouK4-gOBFX6B1ps2huVz2ZGHBgvW6JG0ikdpKUhb69lq6iFczzP9_c_ER8oiQIIJ8rorDW5JCSpOM8hwZXJEVMsZjDile_-2Y3ZK7ED4BKEWer8iu9O6smikuvQnGn13_EZV-0Eq7zoXRNdFOjSra983QzpkdfFQM1XLd9Kqbggv35MaqLpiHy1yT98O-2r7Ep9djsd2c4gYljrEF2QoBos01y7lSoC1HIQGt5mB0w5kSMmst5i2KNKUtk0znoGxqKRdCZWuCy9_GDyF4Y-tv776Un2qEetZQzxrqWUN90fDLPC2MM8b863OZMUmzHwCLWOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Privacy-Preserving Probabilistic Data Encoding for IoT Data Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Zaman, Zakia ; Xue, Wanli ; Gauravaram, Praveen ; Hu, Wen ; Jiang, Jiaojiao ; Jha, Sanjay K.</creator><creatorcontrib>Zaman, Zakia ; Xue, Wanli ; Gauravaram, Praveen ; Hu, Wen ; Jiang, Jiaojiao ; Jha, Sanjay K.</creatorcontrib><description>The widespread integration of the Internet of Things (IoT) is crucial in advancing sustainable development. IoT service providers actively collect user data for analysis using sophisticated Deep Learning (DL) algorithms. This enables the extraction of valuable insights for business intelligence and improving service quality. However, as these datasets contain sensitive personal information, there is a risk of privacy breaches when DL models are employed. This vulnerability may result in Membership Inference Attacks (MIA), potentially leading to the unauthorized disclosure of highly sensitive data. Therefore, developing an efficient and privacy-preserving data analysis system for IoT is imperative. Recent research has highlighted the effectiveness of utilizing Bloom Filter (BF)-encoding in conjunction with Differential Privacy (DP) for safeguarding privacy during data analysis. Given its attributes of low complexity and high utility, this approach proves effective, particularly in resource-constrained IoT domains. With this in mind, we propose a novel framework for privacy-preserving IoT data analysis based on BF-encoded data. Our research introduces an innovative BF-encoding technique combined with Local Differential Privacy (LDP), capable of efficiently encoding various types of IoT data (such as facial images and smart-meter data) while maintaining privacy when integrated into DL algorithms for downstream analysis. Experimental results demonstrate that our BF-encoded data surpasses the utility of standard BF-encoded data when utilized in DL algorithms for downstream tasks, showcasing an approximate 30% improvement in classification accuracy. Furthermore, we assess the privacy of these DL models against MIA, revealing that attackers can only make random guesses with an accuracy of approximately 50%.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2024.3468150</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>IEEE</publisher><subject>bloom filter ; Cloud computing ; Data analysis ; Data encoding ; Data models ; Data privacy ; Differential privacy ; Encoding ; Privacy ; privacy-preserving machine learning ; utility</subject><ispartof>IEEE transactions on information forensics and security, 2024, Vol.19, p.9173-9187</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c191t-f09d7707d8b586aa0bf617901fb60ebc65a793df18d17224d595b80af2f4677a3</cites><orcidid>0000-0002-6000-7242 ; 0000-0001-9135-2930 ; 0000-0001-7307-8114 ; 0000-0002-4076-1811 ; 0000-0002-1844-1520 ; 0000-0001-5340-0815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10693594$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10693594$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zaman, Zakia</creatorcontrib><creatorcontrib>Xue, Wanli</creatorcontrib><creatorcontrib>Gauravaram, Praveen</creatorcontrib><creatorcontrib>Hu, Wen</creatorcontrib><creatorcontrib>Jiang, Jiaojiao</creatorcontrib><creatorcontrib>Jha, Sanjay K.</creatorcontrib><title>Privacy-Preserving Probabilistic Data Encoding for IoT Data Analysis</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>The widespread integration of the Internet of Things (IoT) is crucial in advancing sustainable development. IoT service providers actively collect user data for analysis using sophisticated Deep Learning (DL) algorithms. This enables the extraction of valuable insights for business intelligence and improving service quality. However, as these datasets contain sensitive personal information, there is a risk of privacy breaches when DL models are employed. This vulnerability may result in Membership Inference Attacks (MIA), potentially leading to the unauthorized disclosure of highly sensitive data. Therefore, developing an efficient and privacy-preserving data analysis system for IoT is imperative. Recent research has highlighted the effectiveness of utilizing Bloom Filter (BF)-encoding in conjunction with Differential Privacy (DP) for safeguarding privacy during data analysis. Given its attributes of low complexity and high utility, this approach proves effective, particularly in resource-constrained IoT domains. With this in mind, we propose a novel framework for privacy-preserving IoT data analysis based on BF-encoded data. Our research introduces an innovative BF-encoding technique combined with Local Differential Privacy (LDP), capable of efficiently encoding various types of IoT data (such as facial images and smart-meter data) while maintaining privacy when integrated into DL algorithms for downstream analysis. Experimental results demonstrate that our BF-encoded data surpasses the utility of standard BF-encoded data when utilized in DL algorithms for downstream tasks, showcasing an approximate 30% improvement in classification accuracy. Furthermore, we assess the privacy of these DL models against MIA, revealing that attackers can only make random guesses with an accuracy of approximately 50%.</description><subject>bloom filter</subject><subject>Cloud computing</subject><subject>Data analysis</subject><subject>Data encoding</subject><subject>Data models</subject><subject>Data privacy</subject><subject>Differential privacy</subject><subject>Encoding</subject><subject>Privacy</subject><subject>privacy-preserving machine learning</subject><subject>utility</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNtKxDAQhoMouK4-gOBFX6B1ps2huVz2ZGHBgvW6JG0ikdpKUhb69lq6iFczzP9_c_ER8oiQIIJ8rorDW5JCSpOM8hwZXJEVMsZjDile_-2Y3ZK7ED4BKEWer8iu9O6smikuvQnGn13_EZV-0Eq7zoXRNdFOjSra983QzpkdfFQM1XLd9Kqbggv35MaqLpiHy1yT98O-2r7Ep9djsd2c4gYljrEF2QoBos01y7lSoC1HIQGt5mB0w5kSMmst5i2KNKUtk0znoGxqKRdCZWuCy9_GDyF4Y-tv776Un2qEetZQzxrqWUN90fDLPC2MM8b863OZMUmzHwCLWOo</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zaman, Zakia</creator><creator>Xue, Wanli</creator><creator>Gauravaram, Praveen</creator><creator>Hu, Wen</creator><creator>Jiang, Jiaojiao</creator><creator>Jha, Sanjay K.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6000-7242</orcidid><orcidid>https://orcid.org/0000-0001-9135-2930</orcidid><orcidid>https://orcid.org/0000-0001-7307-8114</orcidid><orcidid>https://orcid.org/0000-0002-4076-1811</orcidid><orcidid>https://orcid.org/0000-0002-1844-1520</orcidid><orcidid>https://orcid.org/0000-0001-5340-0815</orcidid></search><sort><creationdate>2024</creationdate><title>Privacy-Preserving Probabilistic Data Encoding for IoT Data Analysis</title><author>Zaman, Zakia ; Xue, Wanli ; Gauravaram, Praveen ; Hu, Wen ; Jiang, Jiaojiao ; Jha, Sanjay K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c191t-f09d7707d8b586aa0bf617901fb60ebc65a793df18d17224d595b80af2f4677a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bloom filter</topic><topic>Cloud computing</topic><topic>Data analysis</topic><topic>Data encoding</topic><topic>Data models</topic><topic>Data privacy</topic><topic>Differential privacy</topic><topic>Encoding</topic><topic>Privacy</topic><topic>privacy-preserving machine learning</topic><topic>utility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaman, Zakia</creatorcontrib><creatorcontrib>Xue, Wanli</creatorcontrib><creatorcontrib>Gauravaram, Praveen</creatorcontrib><creatorcontrib>Hu, Wen</creatorcontrib><creatorcontrib>Jiang, Jiaojiao</creatorcontrib><creatorcontrib>Jha, Sanjay K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zaman, Zakia</au><au>Xue, Wanli</au><au>Gauravaram, Praveen</au><au>Hu, Wen</au><au>Jiang, Jiaojiao</au><au>Jha, Sanjay K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Privacy-Preserving Probabilistic Data Encoding for IoT Data Analysis</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2024</date><risdate>2024</risdate><volume>19</volume><spage>9173</spage><epage>9187</epage><pages>9173-9187</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>The widespread integration of the Internet of Things (IoT) is crucial in advancing sustainable development. IoT service providers actively collect user data for analysis using sophisticated Deep Learning (DL) algorithms. This enables the extraction of valuable insights for business intelligence and improving service quality. However, as these datasets contain sensitive personal information, there is a risk of privacy breaches when DL models are employed. This vulnerability may result in Membership Inference Attacks (MIA), potentially leading to the unauthorized disclosure of highly sensitive data. Therefore, developing an efficient and privacy-preserving data analysis system for IoT is imperative. Recent research has highlighted the effectiveness of utilizing Bloom Filter (BF)-encoding in conjunction with Differential Privacy (DP) for safeguarding privacy during data analysis. Given its attributes of low complexity and high utility, this approach proves effective, particularly in resource-constrained IoT domains. With this in mind, we propose a novel framework for privacy-preserving IoT data analysis based on BF-encoded data. Our research introduces an innovative BF-encoding technique combined with Local Differential Privacy (LDP), capable of efficiently encoding various types of IoT data (such as facial images and smart-meter data) while maintaining privacy when integrated into DL algorithms for downstream analysis. Experimental results demonstrate that our BF-encoded data surpasses the utility of standard BF-encoded data when utilized in DL algorithms for downstream tasks, showcasing an approximate 30% improvement in classification accuracy. Furthermore, we assess the privacy of these DL models against MIA, revealing that attackers can only make random guesses with an accuracy of approximately 50%.</abstract><pub>IEEE</pub><doi>10.1109/TIFS.2024.3468150</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6000-7242</orcidid><orcidid>https://orcid.org/0000-0001-9135-2930</orcidid><orcidid>https://orcid.org/0000-0001-7307-8114</orcidid><orcidid>https://orcid.org/0000-0002-4076-1811</orcidid><orcidid>https://orcid.org/0000-0002-1844-1520</orcidid><orcidid>https://orcid.org/0000-0001-5340-0815</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1556-6013
ispartof IEEE transactions on information forensics and security, 2024, Vol.19, p.9173-9187
issn 1556-6013
1556-6021
language eng
recordid cdi_ieee_primary_10693594
source IEEE Electronic Library (IEL)
subjects bloom filter
Cloud computing
Data analysis
Data encoding
Data models
Data privacy
Differential privacy
Encoding
Privacy
privacy-preserving machine learning
utility
title Privacy-Preserving Probabilistic Data Encoding for IoT Data Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Privacy-Preserving%20Probabilistic%20Data%20Encoding%20for%20IoT%20Data%20Analysis&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Zaman,%20Zakia&rft.date=2024&rft.volume=19&rft.spage=9173&rft.epage=9187&rft.pages=9173-9187&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2024.3468150&rft_dat=%3Ccrossref_RIE%3E10_1109_TIFS_2024_3468150%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10693594&rfr_iscdi=true