Removing Neurons From Deep Neural Networks Trained With Tabular Data

Deep neural networks bear substantial cloud computational loads and often surpass client devices' capabilities. Research has concentrated on reducing the inference burden of convolutional neural networks processing images. Unstructured pruning, which leads to sparse matrices requiring specializ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE open journal of the Computer Society 2024, Vol.5, p.542-552
Hauptverfasser: Klemetti, Antti, Raatikainen, Mikko, Kivimaki, Juhani, Myllyaho, Lalli, Nurminen, Jukka K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 552
container_issue
container_start_page 542
container_title IEEE open journal of the Computer Society
container_volume 5
creator Klemetti, Antti
Raatikainen, Mikko
Kivimaki, Juhani
Myllyaho, Lalli
Nurminen, Jukka K.
description Deep neural networks bear substantial cloud computational loads and often surpass client devices' capabilities. Research has concentrated on reducing the inference burden of convolutional neural networks processing images. Unstructured pruning, which leads to sparse matrices requiring specialized hardware, has been extensively studied. However, neural networks trained with tabular data and structured pruning, which produces dense matrices handled by standard hardware, are less explored. We compare two approaches: 1) Removing neurons followed by training from scratch, and 2) Structured pruning followed by fine-tuning through additional training over a limited number of epochs. We evaluate these approaches using three models of varying sizes (1.5, 9.2, and 118.7 million parameters) from Kaggle-winning neural networks trained with tabular data. Approach 1 consistently outperformed Approach 2 in predictive performance. The models from Approach 1 had 52%, 8%, and 12% fewer parameters than the original models, with latency reductions of 18%, 5%, and 5%, respectively. Approach 2 required at least one epoch of fine-tuning for recovering predictive performance, with further fine-tuning offering diminishing returns. Approach 1 yields lighter models for retraining in the presence of concept drift and avoids shifting computational load from inference to training, which is inherent in Approach 2. However, Approach 2 can be used to pinpoint the layers that have the least impact on the model's predictive performance when neurons are removed. We found that the feed-forward component of the transformer architecture used in large language models is a promising target for neuron removal.
doi_str_mv 10.1109/OJCS.2024.3467182
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10693557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10693557</ieee_id><doaj_id>oai_doaj_org_article_d3877c3d230a41d2aaf6cf301b5273c4</doaj_id><sourcerecordid>3114560732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-27324796ddbfe5cd1f4e6c96708b0e3c0cecdb66faf3c533d73f12b56b2a55ef3</originalsourceid><addsrcrecordid>eNpNUE1Lw0AUDKJgqf0BgoeA59T9TnKU1mqlWNCKx2Wz-7amptm6myj-e9OmiKd5DDPzhomiS4zGGKP8Zvk4eRkTRNiYMpHijJxEAyIYSzAR2em_-zwahbBBCBGOMaZ8EE2fYeu-ynodP0HrXR3imXfbeAqwOzCq6qD5dv4jxCuvyhpM_FY27_FKFW2lfDxVjbqIzqyqAoyOOIxeZ3eryUOyWN7PJ7eLRJOMNwlJKWFpLowpLHBtsGUgdC5SlBUIqEYatCmEsMpSzSk1KbWYFFwURHEOlg6jeZ9rnNrInS-3yv9Ip0p5IJxfS-WbUlcgDc3SVFNDKFIMG6KUFdpShAve1dCsy7rus3befbYQGrlxra-7-pJizLhAXdtOhXuV9i4ED_bvK0Zyv73cby_328vj9p3nqveUAPBPL3LKeUp_AakIfq0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3114560732</pqid></control><display><type>article</type><title>Removing Neurons From Deep Neural Networks Trained With Tabular Data</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Klemetti, Antti ; Raatikainen, Mikko ; Kivimaki, Juhani ; Myllyaho, Lalli ; Nurminen, Jukka K.</creator><creatorcontrib>Klemetti, Antti ; Raatikainen, Mikko ; Kivimaki, Juhani ; Myllyaho, Lalli ; Nurminen, Jukka K.</creatorcontrib><description>Deep neural networks bear substantial cloud computational loads and often surpass client devices' capabilities. Research has concentrated on reducing the inference burden of convolutional neural networks processing images. Unstructured pruning, which leads to sparse matrices requiring specialized hardware, has been extensively studied. However, neural networks trained with tabular data and structured pruning, which produces dense matrices handled by standard hardware, are less explored. We compare two approaches: 1) Removing neurons followed by training from scratch, and 2) Structured pruning followed by fine-tuning through additional training over a limited number of epochs. We evaluate these approaches using three models of varying sizes (1.5, 9.2, and 118.7 million parameters) from Kaggle-winning neural networks trained with tabular data. Approach 1 consistently outperformed Approach 2 in predictive performance. The models from Approach 1 had 52%, 8%, and 12% fewer parameters than the original models, with latency reductions of 18%, 5%, and 5%, respectively. Approach 2 required at least one epoch of fine-tuning for recovering predictive performance, with further fine-tuning offering diminishing returns. Approach 1 yields lighter models for retraining in the presence of concept drift and avoids shifting computational load from inference to training, which is inherent in Approach 2. However, Approach 2 can be used to pinpoint the layers that have the least impact on the model's predictive performance when neurons are removed. We found that the feed-forward component of the transformer architecture used in large language models is a promising target for neuron removal.</description><identifier>ISSN: 2644-1268</identifier><identifier>EISSN: 2644-1268</identifier><identifier>DOI: 10.1109/OJCS.2024.3467182</identifier><identifier>CODEN: IOJCB2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Computational modeling ; Computer architecture ; Cost-efficiency ; Data models ; deep learning ; deep neural network ; Hardware ; Inference ; Large language models ; Network latency ; Neural networks ; Neurons ; Parameters ; Performance prediction ; Predictive models ; Pruning ; Sparse matrices ; Tables (data) ; tabular DNN ; Training ; Unstructured data</subject><ispartof>IEEE open journal of the Computer Society, 2024, Vol.5, p.542-552</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c285t-27324796ddbfe5cd1f4e6c96708b0e3c0cecdb66faf3c533d73f12b56b2a55ef3</cites><orcidid>0000-0002-9673-9760 ; 0000-0002-0953-9825 ; 0000-0002-2410-0722 ; 0000-0001-6578-6284 ; 0000-0001-5083-1927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10693557$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Klemetti, Antti</creatorcontrib><creatorcontrib>Raatikainen, Mikko</creatorcontrib><creatorcontrib>Kivimaki, Juhani</creatorcontrib><creatorcontrib>Myllyaho, Lalli</creatorcontrib><creatorcontrib>Nurminen, Jukka K.</creatorcontrib><title>Removing Neurons From Deep Neural Networks Trained With Tabular Data</title><title>IEEE open journal of the Computer Society</title><addtitle>OJCS</addtitle><description>Deep neural networks bear substantial cloud computational loads and often surpass client devices' capabilities. Research has concentrated on reducing the inference burden of convolutional neural networks processing images. Unstructured pruning, which leads to sparse matrices requiring specialized hardware, has been extensively studied. However, neural networks trained with tabular data and structured pruning, which produces dense matrices handled by standard hardware, are less explored. We compare two approaches: 1) Removing neurons followed by training from scratch, and 2) Structured pruning followed by fine-tuning through additional training over a limited number of epochs. We evaluate these approaches using three models of varying sizes (1.5, 9.2, and 118.7 million parameters) from Kaggle-winning neural networks trained with tabular data. Approach 1 consistently outperformed Approach 2 in predictive performance. The models from Approach 1 had 52%, 8%, and 12% fewer parameters than the original models, with latency reductions of 18%, 5%, and 5%, respectively. Approach 2 required at least one epoch of fine-tuning for recovering predictive performance, with further fine-tuning offering diminishing returns. Approach 1 yields lighter models for retraining in the presence of concept drift and avoids shifting computational load from inference to training, which is inherent in Approach 2. However, Approach 2 can be used to pinpoint the layers that have the least impact on the model's predictive performance when neurons are removed. We found that the feed-forward component of the transformer architecture used in large language models is a promising target for neuron removal.</description><subject>Artificial neural networks</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Cost-efficiency</subject><subject>Data models</subject><subject>deep learning</subject><subject>deep neural network</subject><subject>Hardware</subject><subject>Inference</subject><subject>Large language models</subject><subject>Network latency</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Parameters</subject><subject>Performance prediction</subject><subject>Predictive models</subject><subject>Pruning</subject><subject>Sparse matrices</subject><subject>Tables (data)</subject><subject>tabular DNN</subject><subject>Training</subject><subject>Unstructured data</subject><issn>2644-1268</issn><issn>2644-1268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1Lw0AUDKJgqf0BgoeA59T9TnKU1mqlWNCKx2Wz-7amptm6myj-e9OmiKd5DDPzhomiS4zGGKP8Zvk4eRkTRNiYMpHijJxEAyIYSzAR2em_-zwahbBBCBGOMaZ8EE2fYeu-ynodP0HrXR3imXfbeAqwOzCq6qD5dv4jxCuvyhpM_FY27_FKFW2lfDxVjbqIzqyqAoyOOIxeZ3eryUOyWN7PJ7eLRJOMNwlJKWFpLowpLHBtsGUgdC5SlBUIqEYatCmEsMpSzSk1KbWYFFwURHEOlg6jeZ9rnNrInS-3yv9Ip0p5IJxfS-WbUlcgDc3SVFNDKFIMG6KUFdpShAve1dCsy7rus3befbYQGrlxra-7-pJizLhAXdtOhXuV9i4ED_bvK0Zyv73cby_328vj9p3nqveUAPBPL3LKeUp_AakIfq0</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Klemetti, Antti</creator><creator>Raatikainen, Mikko</creator><creator>Kivimaki, Juhani</creator><creator>Myllyaho, Lalli</creator><creator>Nurminen, Jukka K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9673-9760</orcidid><orcidid>https://orcid.org/0000-0002-0953-9825</orcidid><orcidid>https://orcid.org/0000-0002-2410-0722</orcidid><orcidid>https://orcid.org/0000-0001-6578-6284</orcidid><orcidid>https://orcid.org/0000-0001-5083-1927</orcidid></search><sort><creationdate>2024</creationdate><title>Removing Neurons From Deep Neural Networks Trained With Tabular Data</title><author>Klemetti, Antti ; Raatikainen, Mikko ; Kivimaki, Juhani ; Myllyaho, Lalli ; Nurminen, Jukka K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-27324796ddbfe5cd1f4e6c96708b0e3c0cecdb66faf3c533d73f12b56b2a55ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Cost-efficiency</topic><topic>Data models</topic><topic>deep learning</topic><topic>deep neural network</topic><topic>Hardware</topic><topic>Inference</topic><topic>Large language models</topic><topic>Network latency</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Parameters</topic><topic>Performance prediction</topic><topic>Predictive models</topic><topic>Pruning</topic><topic>Sparse matrices</topic><topic>Tables (data)</topic><topic>tabular DNN</topic><topic>Training</topic><topic>Unstructured data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klemetti, Antti</creatorcontrib><creatorcontrib>Raatikainen, Mikko</creatorcontrib><creatorcontrib>Kivimaki, Juhani</creatorcontrib><creatorcontrib>Myllyaho, Lalli</creatorcontrib><creatorcontrib>Nurminen, Jukka K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of the Computer Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klemetti, Antti</au><au>Raatikainen, Mikko</au><au>Kivimaki, Juhani</au><au>Myllyaho, Lalli</au><au>Nurminen, Jukka K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Removing Neurons From Deep Neural Networks Trained With Tabular Data</atitle><jtitle>IEEE open journal of the Computer Society</jtitle><stitle>OJCS</stitle><date>2024</date><risdate>2024</risdate><volume>5</volume><spage>542</spage><epage>552</epage><pages>542-552</pages><issn>2644-1268</issn><eissn>2644-1268</eissn><coden>IOJCB2</coden><abstract>Deep neural networks bear substantial cloud computational loads and often surpass client devices' capabilities. Research has concentrated on reducing the inference burden of convolutional neural networks processing images. Unstructured pruning, which leads to sparse matrices requiring specialized hardware, has been extensively studied. However, neural networks trained with tabular data and structured pruning, which produces dense matrices handled by standard hardware, are less explored. We compare two approaches: 1) Removing neurons followed by training from scratch, and 2) Structured pruning followed by fine-tuning through additional training over a limited number of epochs. We evaluate these approaches using three models of varying sizes (1.5, 9.2, and 118.7 million parameters) from Kaggle-winning neural networks trained with tabular data. Approach 1 consistently outperformed Approach 2 in predictive performance. The models from Approach 1 had 52%, 8%, and 12% fewer parameters than the original models, with latency reductions of 18%, 5%, and 5%, respectively. Approach 2 required at least one epoch of fine-tuning for recovering predictive performance, with further fine-tuning offering diminishing returns. Approach 1 yields lighter models for retraining in the presence of concept drift and avoids shifting computational load from inference to training, which is inherent in Approach 2. However, Approach 2 can be used to pinpoint the layers that have the least impact on the model's predictive performance when neurons are removed. We found that the feed-forward component of the transformer architecture used in large language models is a promising target for neuron removal.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/OJCS.2024.3467182</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9673-9760</orcidid><orcidid>https://orcid.org/0000-0002-0953-9825</orcidid><orcidid>https://orcid.org/0000-0002-2410-0722</orcidid><orcidid>https://orcid.org/0000-0001-6578-6284</orcidid><orcidid>https://orcid.org/0000-0001-5083-1927</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2644-1268
ispartof IEEE open journal of the Computer Society, 2024, Vol.5, p.542-552
issn 2644-1268
2644-1268
language eng
recordid cdi_ieee_primary_10693557
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Artificial neural networks
Computational modeling
Computer architecture
Cost-efficiency
Data models
deep learning
deep neural network
Hardware
Inference
Large language models
Network latency
Neural networks
Neurons
Parameters
Performance prediction
Predictive models
Pruning
Sparse matrices
Tables (data)
tabular DNN
Training
Unstructured data
title Removing Neurons From Deep Neural Networks Trained With Tabular Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A14%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Removing%20Neurons%20From%20Deep%20Neural%20Networks%20Trained%20With%20Tabular%20Data&rft.jtitle=IEEE%20open%20journal%20of%20the%20Computer%20Society&rft.au=Klemetti,%20Antti&rft.date=2024&rft.volume=5&rft.spage=542&rft.epage=552&rft.pages=542-552&rft.issn=2644-1268&rft.eissn=2644-1268&rft.coden=IOJCB2&rft_id=info:doi/10.1109/OJCS.2024.3467182&rft_dat=%3Cproquest_ieee_%3E3114560732%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3114560732&rft_id=info:pmid/&rft_ieee_id=10693557&rft_doaj_id=oai_doaj_org_article_d3877c3d230a41d2aaf6cf301b5273c4&rfr_iscdi=true