Infrared Image Dynamic Range Compression Based on Adaptive Contrast Adjustment and Structure Preservation

The infrared (IR) image dynamic range compression (DRC) technology involves compressing high dynamic range (HDR) IR images into low dynamic range (LDR) images for display on common devices. To facilitate human observation, DRC methods should preserve the structural information as much as possible wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-12
Hauptverfasser: Qiu, Jinyi, Wang, Zhan, Huang, Yuanfei, Huang, Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Qiu, Jinyi
Wang, Zhan
Huang, Yuanfei
Huang, Hua
description The infrared (IR) image dynamic range compression (DRC) technology involves compressing high dynamic range (HDR) IR images into low dynamic range (LDR) images for display on common devices. To facilitate human observation, DRC methods should preserve the structural information as much as possible while adjusting the contrast of HDR IR images. However, existing DRC methods struggle to adapt to various highly dynamic IR scenes when using fixed parameter settings. To address this limitation, a novel gradient domain-based DRC method with adaptive contrast adjustment and structure preservation (ACASP) is proposed. Our ACASP adapts local contrast and gradients by analyzing local features of HDR IR images, effectively handling different HDR IR scenes. We introduce local contrast and variance to enhance visibility in low-contrast areas and preserve details in high-contrast areas. Specifically, we design a contrast-adaptive mapping curve and a gradient-adaptive modulation factor (GMF) to optimize both contrast and structure in the LDR image. Extensive experiments on three public HDR IR datasets demonstrate that the proposed method can outperform state-of-the-art DRC methods in both quantitative and qualitative analyses. This work contributes to the field by offering a more adaptive and robust approach to IR image DRC.
doi_str_mv 10.1109/TGRS.2024.3466388
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10689442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10689442</ieee_id><sourcerecordid>3112928204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-20784ed01d272e19c4b19a5741035bcbe786996a7bf680caaee9b500480ece063</originalsourceid><addsrcrecordid>eNpNkF9LwzAUxYMoOKcfQPCh4HPnTZqmyeOcOgcDZZvPJW1vpcOmNUkH-_ambA8-3X-_cy4cQu4pzCgF9bRbbrYzBozPEi5EIuUFmdA0lTEIzi_JBKgSMZOKXZMb5_YAlKc0m5BmZWqrLVbRqtXfGL0cjW6bMtpoE6ZF1_YWnWs6Ez1rF6jQzCvd--YwXo232vmw2Q_Ot2h8pE0Vbb0dSj9YjD6DGO1B-2BwS65q_ePw7lyn5Ovtdbd4j9cfy9Vivo5LmgkfM8gkxwpoxTKGVJW8oEqnGaeQpEVZYCaFUkJnRS0klFojqiIF4BKwRBDJlDyefHvb_Q7ofL7vBmvCyzyhlCkmGfBA0RNV2s45i3Xe26bV9phTyMdE8zHRfEw0PycaNA8nTYOI_3ghFecs-QNEKXL_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112928204</pqid></control><display><type>article</type><title>Infrared Image Dynamic Range Compression Based on Adaptive Contrast Adjustment and Structure Preservation</title><source>IEEE Electronic Library (IEL)</source><creator>Qiu, Jinyi ; Wang, Zhan ; Huang, Yuanfei ; Huang, Hua</creator><creatorcontrib>Qiu, Jinyi ; Wang, Zhan ; Huang, Yuanfei ; Huang, Hua</creatorcontrib><description>The infrared (IR) image dynamic range compression (DRC) technology involves compressing high dynamic range (HDR) IR images into low dynamic range (LDR) images for display on common devices. To facilitate human observation, DRC methods should preserve the structural information as much as possible while adjusting the contrast of HDR IR images. However, existing DRC methods struggle to adapt to various highly dynamic IR scenes when using fixed parameter settings. To address this limitation, a novel gradient domain-based DRC method with adaptive contrast adjustment and structure preservation (ACASP) is proposed. Our ACASP adapts local contrast and gradients by analyzing local features of HDR IR images, effectively handling different HDR IR scenes. We introduce local contrast and variance to enhance visibility in low-contrast areas and preserve details in high-contrast areas. Specifically, we design a contrast-adaptive mapping curve and a gradient-adaptive modulation factor (GMF) to optimize both contrast and structure in the LDR image. Extensive experiments on three public HDR IR datasets demonstrate that the proposed method can outperform state-of-the-art DRC methods in both quantitative and qualitative analyses. This work contributes to the field by offering a more adaptive and robust approach to IR image DRC.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3466388</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive equalizers ; Compression ; Contrast adjustment ; Design factors ; Display devices ; Dynamic range ; dynamic range compression (DRC) ; Filters ; Histograms ; Image coding ; Image compression ; Image contrast ; Image edge detection ; Image enhancement ; infrared (IR) image ; Infrared imagery ; Infrared imaging ; Modulation ; Preservation ; Qualitative analysis ; Semantics ; structure preservation</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-20784ed01d272e19c4b19a5741035bcbe786996a7bf680caaee9b500480ece063</cites><orcidid>0009-0007-1426-062X ; 0000-0002-5242-9904 ; 0000-0003-2587-1702 ; 0000-0001-8675-3158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10689442$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,4025,27928,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10689442$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qiu, Jinyi</creatorcontrib><creatorcontrib>Wang, Zhan</creatorcontrib><creatorcontrib>Huang, Yuanfei</creatorcontrib><creatorcontrib>Huang, Hua</creatorcontrib><title>Infrared Image Dynamic Range Compression Based on Adaptive Contrast Adjustment and Structure Preservation</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The infrared (IR) image dynamic range compression (DRC) technology involves compressing high dynamic range (HDR) IR images into low dynamic range (LDR) images for display on common devices. To facilitate human observation, DRC methods should preserve the structural information as much as possible while adjusting the contrast of HDR IR images. However, existing DRC methods struggle to adapt to various highly dynamic IR scenes when using fixed parameter settings. To address this limitation, a novel gradient domain-based DRC method with adaptive contrast adjustment and structure preservation (ACASP) is proposed. Our ACASP adapts local contrast and gradients by analyzing local features of HDR IR images, effectively handling different HDR IR scenes. We introduce local contrast and variance to enhance visibility in low-contrast areas and preserve details in high-contrast areas. Specifically, we design a contrast-adaptive mapping curve and a gradient-adaptive modulation factor (GMF) to optimize both contrast and structure in the LDR image. Extensive experiments on three public HDR IR datasets demonstrate that the proposed method can outperform state-of-the-art DRC methods in both quantitative and qualitative analyses. This work contributes to the field by offering a more adaptive and robust approach to IR image DRC.</description><subject>Adaptive equalizers</subject><subject>Compression</subject><subject>Contrast adjustment</subject><subject>Design factors</subject><subject>Display devices</subject><subject>Dynamic range</subject><subject>dynamic range compression (DRC)</subject><subject>Filters</subject><subject>Histograms</subject><subject>Image coding</subject><subject>Image compression</subject><subject>Image contrast</subject><subject>Image edge detection</subject><subject>Image enhancement</subject><subject>infrared (IR) image</subject><subject>Infrared imagery</subject><subject>Infrared imaging</subject><subject>Modulation</subject><subject>Preservation</subject><subject>Qualitative analysis</subject><subject>Semantics</subject><subject>structure preservation</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF9LwzAUxYMoOKcfQPCh4HPnTZqmyeOcOgcDZZvPJW1vpcOmNUkH-_ambA8-3X-_cy4cQu4pzCgF9bRbbrYzBozPEi5EIuUFmdA0lTEIzi_JBKgSMZOKXZMb5_YAlKc0m5BmZWqrLVbRqtXfGL0cjW6bMtpoE6ZF1_YWnWs6Ez1rF6jQzCvd--YwXo232vmw2Q_Ot2h8pE0Vbb0dSj9YjD6DGO1B-2BwS65q_ePw7lyn5Ovtdbd4j9cfy9Vivo5LmgkfM8gkxwpoxTKGVJW8oEqnGaeQpEVZYCaFUkJnRS0klFojqiIF4BKwRBDJlDyefHvb_Q7ofL7vBmvCyzyhlCkmGfBA0RNV2s45i3Xe26bV9phTyMdE8zHRfEw0PycaNA8nTYOI_3ghFecs-QNEKXL_</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Qiu, Jinyi</creator><creator>Wang, Zhan</creator><creator>Huang, Yuanfei</creator><creator>Huang, Hua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0007-1426-062X</orcidid><orcidid>https://orcid.org/0000-0002-5242-9904</orcidid><orcidid>https://orcid.org/0000-0003-2587-1702</orcidid><orcidid>https://orcid.org/0000-0001-8675-3158</orcidid></search><sort><creationdate>2024</creationdate><title>Infrared Image Dynamic Range Compression Based on Adaptive Contrast Adjustment and Structure Preservation</title><author>Qiu, Jinyi ; Wang, Zhan ; Huang, Yuanfei ; Huang, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-20784ed01d272e19c4b19a5741035bcbe786996a7bf680caaee9b500480ece063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive equalizers</topic><topic>Compression</topic><topic>Contrast adjustment</topic><topic>Design factors</topic><topic>Display devices</topic><topic>Dynamic range</topic><topic>dynamic range compression (DRC)</topic><topic>Filters</topic><topic>Histograms</topic><topic>Image coding</topic><topic>Image compression</topic><topic>Image contrast</topic><topic>Image edge detection</topic><topic>Image enhancement</topic><topic>infrared (IR) image</topic><topic>Infrared imagery</topic><topic>Infrared imaging</topic><topic>Modulation</topic><topic>Preservation</topic><topic>Qualitative analysis</topic><topic>Semantics</topic><topic>structure preservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Jinyi</creatorcontrib><creatorcontrib>Wang, Zhan</creatorcontrib><creatorcontrib>Huang, Yuanfei</creatorcontrib><creatorcontrib>Huang, Hua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qiu, Jinyi</au><au>Wang, Zhan</au><au>Huang, Yuanfei</au><au>Huang, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infrared Image Dynamic Range Compression Based on Adaptive Contrast Adjustment and Structure Preservation</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The infrared (IR) image dynamic range compression (DRC) technology involves compressing high dynamic range (HDR) IR images into low dynamic range (LDR) images for display on common devices. To facilitate human observation, DRC methods should preserve the structural information as much as possible while adjusting the contrast of HDR IR images. However, existing DRC methods struggle to adapt to various highly dynamic IR scenes when using fixed parameter settings. To address this limitation, a novel gradient domain-based DRC method with adaptive contrast adjustment and structure preservation (ACASP) is proposed. Our ACASP adapts local contrast and gradients by analyzing local features of HDR IR images, effectively handling different HDR IR scenes. We introduce local contrast and variance to enhance visibility in low-contrast areas and preserve details in high-contrast areas. Specifically, we design a contrast-adaptive mapping curve and a gradient-adaptive modulation factor (GMF) to optimize both contrast and structure in the LDR image. Extensive experiments on three public HDR IR datasets demonstrate that the proposed method can outperform state-of-the-art DRC methods in both quantitative and qualitative analyses. This work contributes to the field by offering a more adaptive and robust approach to IR image DRC.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3466388</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0007-1426-062X</orcidid><orcidid>https://orcid.org/0000-0002-5242-9904</orcidid><orcidid>https://orcid.org/0000-0003-2587-1702</orcidid><orcidid>https://orcid.org/0000-0001-8675-3158</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-12
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_10689442
source IEEE Electronic Library (IEL)
subjects Adaptive equalizers
Compression
Contrast adjustment
Design factors
Display devices
Dynamic range
dynamic range compression (DRC)
Filters
Histograms
Image coding
Image compression
Image contrast
Image edge detection
Image enhancement
infrared (IR) image
Infrared imagery
Infrared imaging
Modulation
Preservation
Qualitative analysis
Semantics
structure preservation
title Infrared Image Dynamic Range Compression Based on Adaptive Contrast Adjustment and Structure Preservation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T10%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infrared%20Image%20Dynamic%20Range%20Compression%20Based%20on%20Adaptive%20Contrast%20Adjustment%20and%20Structure%20Preservation&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Qiu,%20Jinyi&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3466388&rft_dat=%3Cproquest_RIE%3E3112928204%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112928204&rft_id=info:pmid/&rft_ieee_id=10689442&rfr_iscdi=true