Infrared Image Dynamic Range Compression Based on Adaptive Contrast Adjustment and Structure Preservation
The infrared (IR) image dynamic range compression (DRC) technology involves compressing high dynamic range (HDR) IR images into low dynamic range (LDR) images for display on common devices. To facilitate human observation, DRC methods should preserve the structural information as much as possible wh...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Qiu, Jinyi Wang, Zhan Huang, Yuanfei Huang, Hua |
description | The infrared (IR) image dynamic range compression (DRC) technology involves compressing high dynamic range (HDR) IR images into low dynamic range (LDR) images for display on common devices. To facilitate human observation, DRC methods should preserve the structural information as much as possible while adjusting the contrast of HDR IR images. However, existing DRC methods struggle to adapt to various highly dynamic IR scenes when using fixed parameter settings. To address this limitation, a novel gradient domain-based DRC method with adaptive contrast adjustment and structure preservation (ACASP) is proposed. Our ACASP adapts local contrast and gradients by analyzing local features of HDR IR images, effectively handling different HDR IR scenes. We introduce local contrast and variance to enhance visibility in low-contrast areas and preserve details in high-contrast areas. Specifically, we design a contrast-adaptive mapping curve and a gradient-adaptive modulation factor (GMF) to optimize both contrast and structure in the LDR image. Extensive experiments on three public HDR IR datasets demonstrate that the proposed method can outperform state-of-the-art DRC methods in both quantitative and qualitative analyses. This work contributes to the field by offering a more adaptive and robust approach to IR image DRC. |
doi_str_mv | 10.1109/TGRS.2024.3466388 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10689442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10689442</ieee_id><sourcerecordid>3112928204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-20784ed01d272e19c4b19a5741035bcbe786996a7bf680caaee9b500480ece063</originalsourceid><addsrcrecordid>eNpNkF9LwzAUxYMoOKcfQPCh4HPnTZqmyeOcOgcDZZvPJW1vpcOmNUkH-_ambA8-3X-_cy4cQu4pzCgF9bRbbrYzBozPEi5EIuUFmdA0lTEIzi_JBKgSMZOKXZMb5_YAlKc0m5BmZWqrLVbRqtXfGL0cjW6bMtpoE6ZF1_YWnWs6Ez1rF6jQzCvd--YwXo232vmw2Q_Ot2h8pE0Vbb0dSj9YjD6DGO1B-2BwS65q_ePw7lyn5Ovtdbd4j9cfy9Vivo5LmgkfM8gkxwpoxTKGVJW8oEqnGaeQpEVZYCaFUkJnRS0klFojqiIF4BKwRBDJlDyefHvb_Q7ofL7vBmvCyzyhlCkmGfBA0RNV2s45i3Xe26bV9phTyMdE8zHRfEw0PycaNA8nTYOI_3ghFecs-QNEKXL_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112928204</pqid></control><display><type>article</type><title>Infrared Image Dynamic Range Compression Based on Adaptive Contrast Adjustment and Structure Preservation</title><source>IEEE Electronic Library (IEL)</source><creator>Qiu, Jinyi ; Wang, Zhan ; Huang, Yuanfei ; Huang, Hua</creator><creatorcontrib>Qiu, Jinyi ; Wang, Zhan ; Huang, Yuanfei ; Huang, Hua</creatorcontrib><description>The infrared (IR) image dynamic range compression (DRC) technology involves compressing high dynamic range (HDR) IR images into low dynamic range (LDR) images for display on common devices. To facilitate human observation, DRC methods should preserve the structural information as much as possible while adjusting the contrast of HDR IR images. However, existing DRC methods struggle to adapt to various highly dynamic IR scenes when using fixed parameter settings. To address this limitation, a novel gradient domain-based DRC method with adaptive contrast adjustment and structure preservation (ACASP) is proposed. Our ACASP adapts local contrast and gradients by analyzing local features of HDR IR images, effectively handling different HDR IR scenes. We introduce local contrast and variance to enhance visibility in low-contrast areas and preserve details in high-contrast areas. Specifically, we design a contrast-adaptive mapping curve and a gradient-adaptive modulation factor (GMF) to optimize both contrast and structure in the LDR image. Extensive experiments on three public HDR IR datasets demonstrate that the proposed method can outperform state-of-the-art DRC methods in both quantitative and qualitative analyses. This work contributes to the field by offering a more adaptive and robust approach to IR image DRC.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3466388</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive equalizers ; Compression ; Contrast adjustment ; Design factors ; Display devices ; Dynamic range ; dynamic range compression (DRC) ; Filters ; Histograms ; Image coding ; Image compression ; Image contrast ; Image edge detection ; Image enhancement ; infrared (IR) image ; Infrared imagery ; Infrared imaging ; Modulation ; Preservation ; Qualitative analysis ; Semantics ; structure preservation</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-20784ed01d272e19c4b19a5741035bcbe786996a7bf680caaee9b500480ece063</cites><orcidid>0009-0007-1426-062X ; 0000-0002-5242-9904 ; 0000-0003-2587-1702 ; 0000-0001-8675-3158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10689442$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,4025,27928,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10689442$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qiu, Jinyi</creatorcontrib><creatorcontrib>Wang, Zhan</creatorcontrib><creatorcontrib>Huang, Yuanfei</creatorcontrib><creatorcontrib>Huang, Hua</creatorcontrib><title>Infrared Image Dynamic Range Compression Based on Adaptive Contrast Adjustment and Structure Preservation</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The infrared (IR) image dynamic range compression (DRC) technology involves compressing high dynamic range (HDR) IR images into low dynamic range (LDR) images for display on common devices. To facilitate human observation, DRC methods should preserve the structural information as much as possible while adjusting the contrast of HDR IR images. However, existing DRC methods struggle to adapt to various highly dynamic IR scenes when using fixed parameter settings. To address this limitation, a novel gradient domain-based DRC method with adaptive contrast adjustment and structure preservation (ACASP) is proposed. Our ACASP adapts local contrast and gradients by analyzing local features of HDR IR images, effectively handling different HDR IR scenes. We introduce local contrast and variance to enhance visibility in low-contrast areas and preserve details in high-contrast areas. Specifically, we design a contrast-adaptive mapping curve and a gradient-adaptive modulation factor (GMF) to optimize both contrast and structure in the LDR image. Extensive experiments on three public HDR IR datasets demonstrate that the proposed method can outperform state-of-the-art DRC methods in both quantitative and qualitative analyses. This work contributes to the field by offering a more adaptive and robust approach to IR image DRC.</description><subject>Adaptive equalizers</subject><subject>Compression</subject><subject>Contrast adjustment</subject><subject>Design factors</subject><subject>Display devices</subject><subject>Dynamic range</subject><subject>dynamic range compression (DRC)</subject><subject>Filters</subject><subject>Histograms</subject><subject>Image coding</subject><subject>Image compression</subject><subject>Image contrast</subject><subject>Image edge detection</subject><subject>Image enhancement</subject><subject>infrared (IR) image</subject><subject>Infrared imagery</subject><subject>Infrared imaging</subject><subject>Modulation</subject><subject>Preservation</subject><subject>Qualitative analysis</subject><subject>Semantics</subject><subject>structure preservation</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF9LwzAUxYMoOKcfQPCh4HPnTZqmyeOcOgcDZZvPJW1vpcOmNUkH-_ambA8-3X-_cy4cQu4pzCgF9bRbbrYzBozPEi5EIuUFmdA0lTEIzi_JBKgSMZOKXZMb5_YAlKc0m5BmZWqrLVbRqtXfGL0cjW6bMtpoE6ZF1_YWnWs6Ez1rF6jQzCvd--YwXo232vmw2Q_Ot2h8pE0Vbb0dSj9YjD6DGO1B-2BwS65q_ePw7lyn5Ovtdbd4j9cfy9Vivo5LmgkfM8gkxwpoxTKGVJW8oEqnGaeQpEVZYCaFUkJnRS0klFojqiIF4BKwRBDJlDyefHvb_Q7ofL7vBmvCyzyhlCkmGfBA0RNV2s45i3Xe26bV9phTyMdE8zHRfEw0PycaNA8nTYOI_3ghFecs-QNEKXL_</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Qiu, Jinyi</creator><creator>Wang, Zhan</creator><creator>Huang, Yuanfei</creator><creator>Huang, Hua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0007-1426-062X</orcidid><orcidid>https://orcid.org/0000-0002-5242-9904</orcidid><orcidid>https://orcid.org/0000-0003-2587-1702</orcidid><orcidid>https://orcid.org/0000-0001-8675-3158</orcidid></search><sort><creationdate>2024</creationdate><title>Infrared Image Dynamic Range Compression Based on Adaptive Contrast Adjustment and Structure Preservation</title><author>Qiu, Jinyi ; Wang, Zhan ; Huang, Yuanfei ; Huang, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-20784ed01d272e19c4b19a5741035bcbe786996a7bf680caaee9b500480ece063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive equalizers</topic><topic>Compression</topic><topic>Contrast adjustment</topic><topic>Design factors</topic><topic>Display devices</topic><topic>Dynamic range</topic><topic>dynamic range compression (DRC)</topic><topic>Filters</topic><topic>Histograms</topic><topic>Image coding</topic><topic>Image compression</topic><topic>Image contrast</topic><topic>Image edge detection</topic><topic>Image enhancement</topic><topic>infrared (IR) image</topic><topic>Infrared imagery</topic><topic>Infrared imaging</topic><topic>Modulation</topic><topic>Preservation</topic><topic>Qualitative analysis</topic><topic>Semantics</topic><topic>structure preservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Jinyi</creatorcontrib><creatorcontrib>Wang, Zhan</creatorcontrib><creatorcontrib>Huang, Yuanfei</creatorcontrib><creatorcontrib>Huang, Hua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qiu, Jinyi</au><au>Wang, Zhan</au><au>Huang, Yuanfei</au><au>Huang, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infrared Image Dynamic Range Compression Based on Adaptive Contrast Adjustment and Structure Preservation</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The infrared (IR) image dynamic range compression (DRC) technology involves compressing high dynamic range (HDR) IR images into low dynamic range (LDR) images for display on common devices. To facilitate human observation, DRC methods should preserve the structural information as much as possible while adjusting the contrast of HDR IR images. However, existing DRC methods struggle to adapt to various highly dynamic IR scenes when using fixed parameter settings. To address this limitation, a novel gradient domain-based DRC method with adaptive contrast adjustment and structure preservation (ACASP) is proposed. Our ACASP adapts local contrast and gradients by analyzing local features of HDR IR images, effectively handling different HDR IR scenes. We introduce local contrast and variance to enhance visibility in low-contrast areas and preserve details in high-contrast areas. Specifically, we design a contrast-adaptive mapping curve and a gradient-adaptive modulation factor (GMF) to optimize both contrast and structure in the LDR image. Extensive experiments on three public HDR IR datasets demonstrate that the proposed method can outperform state-of-the-art DRC methods in both quantitative and qualitative analyses. This work contributes to the field by offering a more adaptive and robust approach to IR image DRC.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3466388</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0007-1426-062X</orcidid><orcidid>https://orcid.org/0000-0002-5242-9904</orcidid><orcidid>https://orcid.org/0000-0003-2587-1702</orcidid><orcidid>https://orcid.org/0000-0001-8675-3158</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-12 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_10689442 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive equalizers Compression Contrast adjustment Design factors Display devices Dynamic range dynamic range compression (DRC) Filters Histograms Image coding Image compression Image contrast Image edge detection Image enhancement infrared (IR) image Infrared imagery Infrared imaging Modulation Preservation Qualitative analysis Semantics structure preservation |
title | Infrared Image Dynamic Range Compression Based on Adaptive Contrast Adjustment and Structure Preservation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T10%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infrared%20Image%20Dynamic%20Range%20Compression%20Based%20on%20Adaptive%20Contrast%20Adjustment%20and%20Structure%20Preservation&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Qiu,%20Jinyi&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3466388&rft_dat=%3Cproquest_RIE%3E3112928204%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112928204&rft_id=info:pmid/&rft_ieee_id=10689442&rfr_iscdi=true |