Radar-Based Swimming Activity Recognition with Temporal Dynamic Convolution and Spectral Data Augmentation

Radar-based human activity recognition (HAR) is a popular area of research. In this paper, we investigate methods to improve the generalization of micro-Doppler-based swimming activity recognition. We identify three main challenges to this task: a small dataset lacking motion diversity, inaccurate p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-09, p.1-1
Hauptverfasser: Zhou, Yi, Yu, Xuliang, Lopez-Benitez, Miguel, Yu, Limin, Yue, Yutao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE sensors journal
container_volume
creator Zhou, Yi
Yu, Xuliang
Lopez-Benitez, Miguel
Yu, Limin
Yue, Yutao
description Radar-based human activity recognition (HAR) is a popular area of research. In this paper, we investigate methods to improve the generalization of micro-Doppler-based swimming activity recognition. We identify three main challenges to this task: a small dataset lacking motion diversity, inaccurate period estimation, and inefficient network design that does not take into account the unique characteristics of spectrograms. To address the limited motion diversity, we propose a spectral data augmentation tailored for micro-Doppler spectrograms, including positive augmentations that account for physical fidelity and negative augmentations that penalize the unrealistic examples. We also investigate self-supervised pre-training to effectively use these negative augmentations. To address inaccurate period estimation, we introduce a segmentation approach based on energy distribution to handle temporal period variation. To exploit the spreading pattern of limb motion in the Doppler dimension and the continuous properties of torso motion in the temporal dimension, we design a module consisting of both 2D convolution and 1D temporal dynamic convolution to serve as a feature extractor. Our evaluation on a self-collected swimming activity recognition dataset shows that our model achieves the best classification accuracy and robustness to corruptions, even compared to much larger models and multi-domain fusion models.
doi_str_mv 10.1109/JSEN.2024.3459085
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10684053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10684053</ieee_id><sourcerecordid>10_1109_JSEN_2024_3459085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1065-9dc8a95869b115465a040dd148f9914a26a710566a06c583e5faaf353bdd72373</originalsourceid><addsrcrecordid>eNpNkM1OAjEUhRujiYg-gImLvsBgO_2ZdomIfyGaACbuJpe2gyVMh8wUyLy9DLBwdU9yv3MWH0L3lAwoJfrxYzb-HKQk5QPGhSZKXKAeFUIlNOPqssuMJJxlP9fopmlWhFCdiayHVlOwUCdP0DiLZ3tflj4s8dBEv_OxxVNnqmXw0VcB7338xXNXbqoa1vi5DVB6g0dV2FXr7ZGAcNjYOBOPAETAw-2ydCFC975FVwWsG3d3vn30_TKej96Sydfr-2g4SQwlUiTaGgVaKKkXlAouBRBOrKVcFVpTDqmEjBIhJRBphGJOFAAFE2xhbZayjPURPe2aumqa2hX5pvYl1G1OSd7JyjtZeScrP8s6dB5OHe-c-8dLxYlg7A9A6GcG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Radar-Based Swimming Activity Recognition with Temporal Dynamic Convolution and Spectral Data Augmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Yi ; Yu, Xuliang ; Lopez-Benitez, Miguel ; Yu, Limin ; Yue, Yutao</creator><creatorcontrib>Zhou, Yi ; Yu, Xuliang ; Lopez-Benitez, Miguel ; Yu, Limin ; Yue, Yutao</creatorcontrib><description>Radar-based human activity recognition (HAR) is a popular area of research. In this paper, we investigate methods to improve the generalization of micro-Doppler-based swimming activity recognition. We identify three main challenges to this task: a small dataset lacking motion diversity, inaccurate period estimation, and inefficient network design that does not take into account the unique characteristics of spectrograms. To address the limited motion diversity, we propose a spectral data augmentation tailored for micro-Doppler spectrograms, including positive augmentations that account for physical fidelity and negative augmentations that penalize the unrealistic examples. We also investigate self-supervised pre-training to effectively use these negative augmentations. To address inaccurate period estimation, we introduce a segmentation approach based on energy distribution to handle temporal period variation. To exploit the spreading pattern of limb motion in the Doppler dimension and the continuous properties of torso motion in the temporal dimension, we design a module consisting of both 2D convolution and 1D temporal dynamic convolution to serve as a feature extractor. Our evaluation on a self-collected swimming activity recognition dataset shows that our model achieves the best classification accuracy and robustness to corruptions, even compared to much larger models and multi-domain fusion models.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3459085</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convolution ; Data augmentation ; Doppler effect ; Feature extraction ; human activity recognition ; micro-Doppler spectrogram ; Radar ; Spectrogram ; Sports</subject><ispartof>IEEE sensors journal, 2024-09, p.1-1</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6891-0604 ; 0000-0002-5265-3316 ; 0000-0003-0526-6687 ; 0000-0003-4532-0924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10684053$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10684053$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Yi</creatorcontrib><creatorcontrib>Yu, Xuliang</creatorcontrib><creatorcontrib>Lopez-Benitez, Miguel</creatorcontrib><creatorcontrib>Yu, Limin</creatorcontrib><creatorcontrib>Yue, Yutao</creatorcontrib><title>Radar-Based Swimming Activity Recognition with Temporal Dynamic Convolution and Spectral Data Augmentation</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Radar-based human activity recognition (HAR) is a popular area of research. In this paper, we investigate methods to improve the generalization of micro-Doppler-based swimming activity recognition. We identify three main challenges to this task: a small dataset lacking motion diversity, inaccurate period estimation, and inefficient network design that does not take into account the unique characteristics of spectrograms. To address the limited motion diversity, we propose a spectral data augmentation tailored for micro-Doppler spectrograms, including positive augmentations that account for physical fidelity and negative augmentations that penalize the unrealistic examples. We also investigate self-supervised pre-training to effectively use these negative augmentations. To address inaccurate period estimation, we introduce a segmentation approach based on energy distribution to handle temporal period variation. To exploit the spreading pattern of limb motion in the Doppler dimension and the continuous properties of torso motion in the temporal dimension, we design a module consisting of both 2D convolution and 1D temporal dynamic convolution to serve as a feature extractor. Our evaluation on a self-collected swimming activity recognition dataset shows that our model achieves the best classification accuracy and robustness to corruptions, even compared to much larger models and multi-domain fusion models.</description><subject>Convolution</subject><subject>Data augmentation</subject><subject>Doppler effect</subject><subject>Feature extraction</subject><subject>human activity recognition</subject><subject>micro-Doppler spectrogram</subject><subject>Radar</subject><subject>Spectrogram</subject><subject>Sports</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1OAjEUhRujiYg-gImLvsBgO_2ZdomIfyGaACbuJpe2gyVMh8wUyLy9DLBwdU9yv3MWH0L3lAwoJfrxYzb-HKQk5QPGhSZKXKAeFUIlNOPqssuMJJxlP9fopmlWhFCdiayHVlOwUCdP0DiLZ3tflj4s8dBEv_OxxVNnqmXw0VcB7338xXNXbqoa1vi5DVB6g0dV2FXr7ZGAcNjYOBOPAETAw-2ydCFC975FVwWsG3d3vn30_TKej96Sydfr-2g4SQwlUiTaGgVaKKkXlAouBRBOrKVcFVpTDqmEjBIhJRBphGJOFAAFE2xhbZayjPURPe2aumqa2hX5pvYl1G1OSd7JyjtZeScrP8s6dB5OHe-c-8dLxYlg7A9A6GcG</recordid><startdate>20240918</startdate><enddate>20240918</enddate><creator>Zhou, Yi</creator><creator>Yu, Xuliang</creator><creator>Lopez-Benitez, Miguel</creator><creator>Yu, Limin</creator><creator>Yue, Yutao</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6891-0604</orcidid><orcidid>https://orcid.org/0000-0002-5265-3316</orcidid><orcidid>https://orcid.org/0000-0003-0526-6687</orcidid><orcidid>https://orcid.org/0000-0003-4532-0924</orcidid></search><sort><creationdate>20240918</creationdate><title>Radar-Based Swimming Activity Recognition with Temporal Dynamic Convolution and Spectral Data Augmentation</title><author>Zhou, Yi ; Yu, Xuliang ; Lopez-Benitez, Miguel ; Yu, Limin ; Yue, Yutao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1065-9dc8a95869b115465a040dd148f9914a26a710566a06c583e5faaf353bdd72373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convolution</topic><topic>Data augmentation</topic><topic>Doppler effect</topic><topic>Feature extraction</topic><topic>human activity recognition</topic><topic>micro-Doppler spectrogram</topic><topic>Radar</topic><topic>Spectrogram</topic><topic>Sports</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yi</creatorcontrib><creatorcontrib>Yu, Xuliang</creatorcontrib><creatorcontrib>Lopez-Benitez, Miguel</creatorcontrib><creatorcontrib>Yu, Limin</creatorcontrib><creatorcontrib>Yue, Yutao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Yi</au><au>Yu, Xuliang</au><au>Lopez-Benitez, Miguel</au><au>Yu, Limin</au><au>Yue, Yutao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radar-Based Swimming Activity Recognition with Temporal Dynamic Convolution and Spectral Data Augmentation</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-09-18</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Radar-based human activity recognition (HAR) is a popular area of research. In this paper, we investigate methods to improve the generalization of micro-Doppler-based swimming activity recognition. We identify three main challenges to this task: a small dataset lacking motion diversity, inaccurate period estimation, and inefficient network design that does not take into account the unique characteristics of spectrograms. To address the limited motion diversity, we propose a spectral data augmentation tailored for micro-Doppler spectrograms, including positive augmentations that account for physical fidelity and negative augmentations that penalize the unrealistic examples. We also investigate self-supervised pre-training to effectively use these negative augmentations. To address inaccurate period estimation, we introduce a segmentation approach based on energy distribution to handle temporal period variation. To exploit the spreading pattern of limb motion in the Doppler dimension and the continuous properties of torso motion in the temporal dimension, we design a module consisting of both 2D convolution and 1D temporal dynamic convolution to serve as a feature extractor. Our evaluation on a self-collected swimming activity recognition dataset shows that our model achieves the best classification accuracy and robustness to corruptions, even compared to much larger models and multi-domain fusion models.</abstract><pub>IEEE</pub><doi>10.1109/JSEN.2024.3459085</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6891-0604</orcidid><orcidid>https://orcid.org/0000-0002-5265-3316</orcidid><orcidid>https://orcid.org/0000-0003-0526-6687</orcidid><orcidid>https://orcid.org/0000-0003-4532-0924</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-09, p.1-1
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_10684053
source IEEE Electronic Library (IEL)
subjects Convolution
Data augmentation
Doppler effect
Feature extraction
human activity recognition
micro-Doppler spectrogram
Radar
Spectrogram
Sports
title Radar-Based Swimming Activity Recognition with Temporal Dynamic Convolution and Spectral Data Augmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radar-Based%20Swimming%20Activity%20Recognition%20with%20Temporal%20Dynamic%20Convolution%20and%20Spectral%20Data%20Augmentation&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zhou,%20Yi&rft.date=2024-09-18&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3459085&rft_dat=%3Ccrossref_RIE%3E10_1109_JSEN_2024_3459085%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10684053&rfr_iscdi=true