Radar-Based Swimming Activity Recognition with Temporal Dynamic Convolution and Spectral Data Augmentation
Radar-based human activity recognition (HAR) is a popular area of research. In this paper, we investigate methods to improve the generalization of micro-Doppler-based swimming activity recognition. We identify three main challenges to this task: a small dataset lacking motion diversity, inaccurate p...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2024-09, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE sensors journal |
container_volume | |
creator | Zhou, Yi Yu, Xuliang Lopez-Benitez, Miguel Yu, Limin Yue, Yutao |
description | Radar-based human activity recognition (HAR) is a popular area of research. In this paper, we investigate methods to improve the generalization of micro-Doppler-based swimming activity recognition. We identify three main challenges to this task: a small dataset lacking motion diversity, inaccurate period estimation, and inefficient network design that does not take into account the unique characteristics of spectrograms. To address the limited motion diversity, we propose a spectral data augmentation tailored for micro-Doppler spectrograms, including positive augmentations that account for physical fidelity and negative augmentations that penalize the unrealistic examples. We also investigate self-supervised pre-training to effectively use these negative augmentations. To address inaccurate period estimation, we introduce a segmentation approach based on energy distribution to handle temporal period variation. To exploit the spreading pattern of limb motion in the Doppler dimension and the continuous properties of torso motion in the temporal dimension, we design a module consisting of both 2D convolution and 1D temporal dynamic convolution to serve as a feature extractor. Our evaluation on a self-collected swimming activity recognition dataset shows that our model achieves the best classification accuracy and robustness to corruptions, even compared to much larger models and multi-domain fusion models. |
doi_str_mv | 10.1109/JSEN.2024.3459085 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10684053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10684053</ieee_id><sourcerecordid>10_1109_JSEN_2024_3459085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1065-9dc8a95869b115465a040dd148f9914a26a710566a06c583e5faaf353bdd72373</originalsourceid><addsrcrecordid>eNpNkM1OAjEUhRujiYg-gImLvsBgO_2ZdomIfyGaACbuJpe2gyVMh8wUyLy9DLBwdU9yv3MWH0L3lAwoJfrxYzb-HKQk5QPGhSZKXKAeFUIlNOPqssuMJJxlP9fopmlWhFCdiayHVlOwUCdP0DiLZ3tflj4s8dBEv_OxxVNnqmXw0VcB7338xXNXbqoa1vi5DVB6g0dV2FXr7ZGAcNjYOBOPAETAw-2ydCFC975FVwWsG3d3vn30_TKej96Sydfr-2g4SQwlUiTaGgVaKKkXlAouBRBOrKVcFVpTDqmEjBIhJRBphGJOFAAFE2xhbZayjPURPe2aumqa2hX5pvYl1G1OSd7JyjtZeScrP8s6dB5OHe-c-8dLxYlg7A9A6GcG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Radar-Based Swimming Activity Recognition with Temporal Dynamic Convolution and Spectral Data Augmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Yi ; Yu, Xuliang ; Lopez-Benitez, Miguel ; Yu, Limin ; Yue, Yutao</creator><creatorcontrib>Zhou, Yi ; Yu, Xuliang ; Lopez-Benitez, Miguel ; Yu, Limin ; Yue, Yutao</creatorcontrib><description>Radar-based human activity recognition (HAR) is a popular area of research. In this paper, we investigate methods to improve the generalization of micro-Doppler-based swimming activity recognition. We identify three main challenges to this task: a small dataset lacking motion diversity, inaccurate period estimation, and inefficient network design that does not take into account the unique characteristics of spectrograms. To address the limited motion diversity, we propose a spectral data augmentation tailored for micro-Doppler spectrograms, including positive augmentations that account for physical fidelity and negative augmentations that penalize the unrealistic examples. We also investigate self-supervised pre-training to effectively use these negative augmentations. To address inaccurate period estimation, we introduce a segmentation approach based on energy distribution to handle temporal period variation. To exploit the spreading pattern of limb motion in the Doppler dimension and the continuous properties of torso motion in the temporal dimension, we design a module consisting of both 2D convolution and 1D temporal dynamic convolution to serve as a feature extractor. Our evaluation on a self-collected swimming activity recognition dataset shows that our model achieves the best classification accuracy and robustness to corruptions, even compared to much larger models and multi-domain fusion models.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3459085</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convolution ; Data augmentation ; Doppler effect ; Feature extraction ; human activity recognition ; micro-Doppler spectrogram ; Radar ; Spectrogram ; Sports</subject><ispartof>IEEE sensors journal, 2024-09, p.1-1</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6891-0604 ; 0000-0002-5265-3316 ; 0000-0003-0526-6687 ; 0000-0003-4532-0924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10684053$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10684053$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Yi</creatorcontrib><creatorcontrib>Yu, Xuliang</creatorcontrib><creatorcontrib>Lopez-Benitez, Miguel</creatorcontrib><creatorcontrib>Yu, Limin</creatorcontrib><creatorcontrib>Yue, Yutao</creatorcontrib><title>Radar-Based Swimming Activity Recognition with Temporal Dynamic Convolution and Spectral Data Augmentation</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Radar-based human activity recognition (HAR) is a popular area of research. In this paper, we investigate methods to improve the generalization of micro-Doppler-based swimming activity recognition. We identify three main challenges to this task: a small dataset lacking motion diversity, inaccurate period estimation, and inefficient network design that does not take into account the unique characteristics of spectrograms. To address the limited motion diversity, we propose a spectral data augmentation tailored for micro-Doppler spectrograms, including positive augmentations that account for physical fidelity and negative augmentations that penalize the unrealistic examples. We also investigate self-supervised pre-training to effectively use these negative augmentations. To address inaccurate period estimation, we introduce a segmentation approach based on energy distribution to handle temporal period variation. To exploit the spreading pattern of limb motion in the Doppler dimension and the continuous properties of torso motion in the temporal dimension, we design a module consisting of both 2D convolution and 1D temporal dynamic convolution to serve as a feature extractor. Our evaluation on a self-collected swimming activity recognition dataset shows that our model achieves the best classification accuracy and robustness to corruptions, even compared to much larger models and multi-domain fusion models.</description><subject>Convolution</subject><subject>Data augmentation</subject><subject>Doppler effect</subject><subject>Feature extraction</subject><subject>human activity recognition</subject><subject>micro-Doppler spectrogram</subject><subject>Radar</subject><subject>Spectrogram</subject><subject>Sports</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1OAjEUhRujiYg-gImLvsBgO_2ZdomIfyGaACbuJpe2gyVMh8wUyLy9DLBwdU9yv3MWH0L3lAwoJfrxYzb-HKQk5QPGhSZKXKAeFUIlNOPqssuMJJxlP9fopmlWhFCdiayHVlOwUCdP0DiLZ3tflj4s8dBEv_OxxVNnqmXw0VcB7338xXNXbqoa1vi5DVB6g0dV2FXr7ZGAcNjYOBOPAETAw-2ydCFC975FVwWsG3d3vn30_TKej96Sydfr-2g4SQwlUiTaGgVaKKkXlAouBRBOrKVcFVpTDqmEjBIhJRBphGJOFAAFE2xhbZayjPURPe2aumqa2hX5pvYl1G1OSd7JyjtZeScrP8s6dB5OHe-c-8dLxYlg7A9A6GcG</recordid><startdate>20240918</startdate><enddate>20240918</enddate><creator>Zhou, Yi</creator><creator>Yu, Xuliang</creator><creator>Lopez-Benitez, Miguel</creator><creator>Yu, Limin</creator><creator>Yue, Yutao</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6891-0604</orcidid><orcidid>https://orcid.org/0000-0002-5265-3316</orcidid><orcidid>https://orcid.org/0000-0003-0526-6687</orcidid><orcidid>https://orcid.org/0000-0003-4532-0924</orcidid></search><sort><creationdate>20240918</creationdate><title>Radar-Based Swimming Activity Recognition with Temporal Dynamic Convolution and Spectral Data Augmentation</title><author>Zhou, Yi ; Yu, Xuliang ; Lopez-Benitez, Miguel ; Yu, Limin ; Yue, Yutao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1065-9dc8a95869b115465a040dd148f9914a26a710566a06c583e5faaf353bdd72373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convolution</topic><topic>Data augmentation</topic><topic>Doppler effect</topic><topic>Feature extraction</topic><topic>human activity recognition</topic><topic>micro-Doppler spectrogram</topic><topic>Radar</topic><topic>Spectrogram</topic><topic>Sports</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yi</creatorcontrib><creatorcontrib>Yu, Xuliang</creatorcontrib><creatorcontrib>Lopez-Benitez, Miguel</creatorcontrib><creatorcontrib>Yu, Limin</creatorcontrib><creatorcontrib>Yue, Yutao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Yi</au><au>Yu, Xuliang</au><au>Lopez-Benitez, Miguel</au><au>Yu, Limin</au><au>Yue, Yutao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radar-Based Swimming Activity Recognition with Temporal Dynamic Convolution and Spectral Data Augmentation</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-09-18</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Radar-based human activity recognition (HAR) is a popular area of research. In this paper, we investigate methods to improve the generalization of micro-Doppler-based swimming activity recognition. We identify three main challenges to this task: a small dataset lacking motion diversity, inaccurate period estimation, and inefficient network design that does not take into account the unique characteristics of spectrograms. To address the limited motion diversity, we propose a spectral data augmentation tailored for micro-Doppler spectrograms, including positive augmentations that account for physical fidelity and negative augmentations that penalize the unrealistic examples. We also investigate self-supervised pre-training to effectively use these negative augmentations. To address inaccurate period estimation, we introduce a segmentation approach based on energy distribution to handle temporal period variation. To exploit the spreading pattern of limb motion in the Doppler dimension and the continuous properties of torso motion in the temporal dimension, we design a module consisting of both 2D convolution and 1D temporal dynamic convolution to serve as a feature extractor. Our evaluation on a self-collected swimming activity recognition dataset shows that our model achieves the best classification accuracy and robustness to corruptions, even compared to much larger models and multi-domain fusion models.</abstract><pub>IEEE</pub><doi>10.1109/JSEN.2024.3459085</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6891-0604</orcidid><orcidid>https://orcid.org/0000-0002-5265-3316</orcidid><orcidid>https://orcid.org/0000-0003-0526-6687</orcidid><orcidid>https://orcid.org/0000-0003-4532-0924</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-09, p.1-1 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_10684053 |
source | IEEE Electronic Library (IEL) |
subjects | Convolution Data augmentation Doppler effect Feature extraction human activity recognition micro-Doppler spectrogram Radar Spectrogram Sports |
title | Radar-Based Swimming Activity Recognition with Temporal Dynamic Convolution and Spectral Data Augmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radar-Based%20Swimming%20Activity%20Recognition%20with%20Temporal%20Dynamic%20Convolution%20and%20Spectral%20Data%20Augmentation&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zhou,%20Yi&rft.date=2024-09-18&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3459085&rft_dat=%3Ccrossref_RIE%3E10_1109_JSEN_2024_3459085%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10684053&rfr_iscdi=true |