From Sim to Real: A Pipeline for Training and Deploying Traffic Smoothing Cruise Controllers
Designing and validating controllers for connected and automated vehicles to enhance traffic flow presents significant challenges, from the complexity of replicating real-world stop-and-go traffic dynamics in simulation, to the intricacies involved in transitioning from simulation to actual deployme...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on robotics 2024, Vol.40, p.4490-4505 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4505 |
---|---|
container_issue | |
container_start_page | 4490 |
container_title | IEEE transactions on robotics |
container_volume | 40 |
creator | Lichtle, Nathan Vinitsky, Eugene Nice, Matthew Bhadani, Rahul Bunting, Matthew Wu, Fangyu Piccoli, Benedetto Seibold, Benjamin Work, Daniel B. Lee, Jonathan W. Sprinkle, Jonathan Bayen, Alexandre M. |
description | Designing and validating controllers for connected and automated vehicles to enhance traffic flow presents significant challenges, from the complexity of replicating real-world stop-and-go traffic dynamics in simulation, to the intricacies involved in transitioning from simulation to actual deployment. In this work, we present a full pipeline from data collection to controller deployment. Specifically, we collect 772 km of driving data from the I-24 in Tennessee, and use it to build a one-lane simulator, placing simulated vehicles behind real-world trajectories. Using policy-gradient methods with an asymmetric critic, we improve fuel efficiency by over 10% when simulating congested scenarios. Our comprehensive approach includes reinforcement learning for controller training, software verification, hardware validation and setup, and navigating various sim-to-real challenges. Furthermore, we analyze the controller's behavior and wave-smoothing properties, and deploy it on four Toyota Rav4's in a real-world validation experiment on the I-24. Finally, we release the driving dataset (Nice et al., 2021), the simulator and the trained controller (Lichtlé et al., 2022), to enable future benchmarking and controller design. |
doi_str_mv | 10.1109/TRO.2024.3463407 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10683987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10683987</ieee_id><sourcerecordid>10_1109_TRO_2024_3463407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-48dd63429328b1b0726f99d7100616d84d88b7eb6b65b9a4cecc6d5f5353279e3</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhC0EEqVw58DBfyDFr_jBrQoUkCoVteWGFCXxGoySuLLDof-eROXAaXdHM6vRh9AtJQtKibnfbzcLRphYcCG5IOoMzagRNCNC6vNxz3OWcWL0JbpK6ZuMTkP4DH2sYujwznd4CHgLVfuAl_jNH6D1PWAXIt7Hyve-_8RVb_EjHNpwnK5Rds43eNeFMHxNShF_fAJchH6IoW0hpmt04ao2wc3fnKP31dO-eMnWm-fXYrnOGirUkAlt7diZGc50TWuimHTGWEUJkVRaLazWtYJa1jKvTSUaaBppc5fznDNlgM8ROf1tYkgpgisP0XdVPJaUlBOdcqRTTnTKPzpj5O4U8QDwzy41N1rxX8eeYH8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>From Sim to Real: A Pipeline for Training and Deploying Traffic Smoothing Cruise Controllers</title><source>IEEE Electronic Library (IEL)</source><creator>Lichtle, Nathan ; Vinitsky, Eugene ; Nice, Matthew ; Bhadani, Rahul ; Bunting, Matthew ; Wu, Fangyu ; Piccoli, Benedetto ; Seibold, Benjamin ; Work, Daniel B. ; Lee, Jonathan W. ; Sprinkle, Jonathan ; Bayen, Alexandre M.</creator><creatorcontrib>Lichtle, Nathan ; Vinitsky, Eugene ; Nice, Matthew ; Bhadani, Rahul ; Bunting, Matthew ; Wu, Fangyu ; Piccoli, Benedetto ; Seibold, Benjamin ; Work, Daniel B. ; Lee, Jonathan W. ; Sprinkle, Jonathan ; Bayen, Alexandre M.</creatorcontrib><description>Designing and validating controllers for connected and automated vehicles to enhance traffic flow presents significant challenges, from the complexity of replicating real-world stop-and-go traffic dynamics in simulation, to the intricacies involved in transitioning from simulation to actual deployment. In this work, we present a full pipeline from data collection to controller deployment. Specifically, we collect 772 km of driving data from the I-24 in Tennessee, and use it to build a one-lane simulator, placing simulated vehicles behind real-world trajectories. Using policy-gradient methods with an asymmetric critic, we improve fuel efficiency by over 10% when simulating congested scenarios. Our comprehensive approach includes reinforcement learning for controller training, software verification, hardware validation and setup, and navigating various sim-to-real challenges. Furthermore, we analyze the controller's behavior and wave-smoothing properties, and deploy it on four Toyota Rav4's in a real-world validation experiment on the I-24. Finally, we release the driving dataset (Nice et al., 2021), the simulator and the trained controller (Lichtlé et al., 2022), to enable future benchmarking and controller design.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2024.3463407</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>IEEE</publisher><subject>Autonomous vehicle navigation ; energy and environment-aware automation ; Hardware ; intelligent transportation systems ; Pipelines ; reinforcement learning (RL) ; Road transportation ; Sensors ; Smoothing methods ; Training ; Trajectory</subject><ispartof>IEEE transactions on robotics, 2024, Vol.40, p.4490-4505</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c147t-48dd63429328b1b0726f99d7100616d84d88b7eb6b65b9a4cecc6d5f5353279e3</cites><orcidid>0000-0003-3932-761X ; 0000-0002-7633-5910 ; 0000-0002-5521-6517 ; 0000-0002-6000-5394 ; 0000-0002-7403-6458 ; 0000-0003-0565-2158 ; 0000-0003-2879-6402 ; 0000-0003-3609-1760 ; 0000-0002-6697-222X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10683987$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10683987$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lichtle, Nathan</creatorcontrib><creatorcontrib>Vinitsky, Eugene</creatorcontrib><creatorcontrib>Nice, Matthew</creatorcontrib><creatorcontrib>Bhadani, Rahul</creatorcontrib><creatorcontrib>Bunting, Matthew</creatorcontrib><creatorcontrib>Wu, Fangyu</creatorcontrib><creatorcontrib>Piccoli, Benedetto</creatorcontrib><creatorcontrib>Seibold, Benjamin</creatorcontrib><creatorcontrib>Work, Daniel B.</creatorcontrib><creatorcontrib>Lee, Jonathan W.</creatorcontrib><creatorcontrib>Sprinkle, Jonathan</creatorcontrib><creatorcontrib>Bayen, Alexandre M.</creatorcontrib><title>From Sim to Real: A Pipeline for Training and Deploying Traffic Smoothing Cruise Controllers</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>Designing and validating controllers for connected and automated vehicles to enhance traffic flow presents significant challenges, from the complexity of replicating real-world stop-and-go traffic dynamics in simulation, to the intricacies involved in transitioning from simulation to actual deployment. In this work, we present a full pipeline from data collection to controller deployment. Specifically, we collect 772 km of driving data from the I-24 in Tennessee, and use it to build a one-lane simulator, placing simulated vehicles behind real-world trajectories. Using policy-gradient methods with an asymmetric critic, we improve fuel efficiency by over 10% when simulating congested scenarios. Our comprehensive approach includes reinforcement learning for controller training, software verification, hardware validation and setup, and navigating various sim-to-real challenges. Furthermore, we analyze the controller's behavior and wave-smoothing properties, and deploy it on four Toyota Rav4's in a real-world validation experiment on the I-24. Finally, we release the driving dataset (Nice et al., 2021), the simulator and the trained controller (Lichtlé et al., 2022), to enable future benchmarking and controller design.</description><subject>Autonomous vehicle navigation</subject><subject>energy and environment-aware automation</subject><subject>Hardware</subject><subject>intelligent transportation systems</subject><subject>Pipelines</subject><subject>reinforcement learning (RL)</subject><subject>Road transportation</subject><subject>Sensors</subject><subject>Smoothing methods</subject><subject>Training</subject><subject>Trajectory</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtPwzAQhC0EEqVw58DBfyDFr_jBrQoUkCoVteWGFCXxGoySuLLDof-eROXAaXdHM6vRh9AtJQtKibnfbzcLRphYcCG5IOoMzagRNCNC6vNxz3OWcWL0JbpK6ZuMTkP4DH2sYujwznd4CHgLVfuAl_jNH6D1PWAXIt7Hyve-_8RVb_EjHNpwnK5Rds43eNeFMHxNShF_fAJchH6IoW0hpmt04ao2wc3fnKP31dO-eMnWm-fXYrnOGirUkAlt7diZGc50TWuimHTGWEUJkVRaLazWtYJa1jKvTSUaaBppc5fznDNlgM8ROf1tYkgpgisP0XdVPJaUlBOdcqRTTnTKPzpj5O4U8QDwzy41N1rxX8eeYH8</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lichtle, Nathan</creator><creator>Vinitsky, Eugene</creator><creator>Nice, Matthew</creator><creator>Bhadani, Rahul</creator><creator>Bunting, Matthew</creator><creator>Wu, Fangyu</creator><creator>Piccoli, Benedetto</creator><creator>Seibold, Benjamin</creator><creator>Work, Daniel B.</creator><creator>Lee, Jonathan W.</creator><creator>Sprinkle, Jonathan</creator><creator>Bayen, Alexandre M.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3932-761X</orcidid><orcidid>https://orcid.org/0000-0002-7633-5910</orcidid><orcidid>https://orcid.org/0000-0002-5521-6517</orcidid><orcidid>https://orcid.org/0000-0002-6000-5394</orcidid><orcidid>https://orcid.org/0000-0002-7403-6458</orcidid><orcidid>https://orcid.org/0000-0003-0565-2158</orcidid><orcidid>https://orcid.org/0000-0003-2879-6402</orcidid><orcidid>https://orcid.org/0000-0003-3609-1760</orcidid><orcidid>https://orcid.org/0000-0002-6697-222X</orcidid></search><sort><creationdate>2024</creationdate><title>From Sim to Real: A Pipeline for Training and Deploying Traffic Smoothing Cruise Controllers</title><author>Lichtle, Nathan ; Vinitsky, Eugene ; Nice, Matthew ; Bhadani, Rahul ; Bunting, Matthew ; Wu, Fangyu ; Piccoli, Benedetto ; Seibold, Benjamin ; Work, Daniel B. ; Lee, Jonathan W. ; Sprinkle, Jonathan ; Bayen, Alexandre M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-48dd63429328b1b0726f99d7100616d84d88b7eb6b65b9a4cecc6d5f5353279e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autonomous vehicle navigation</topic><topic>energy and environment-aware automation</topic><topic>Hardware</topic><topic>intelligent transportation systems</topic><topic>Pipelines</topic><topic>reinforcement learning (RL)</topic><topic>Road transportation</topic><topic>Sensors</topic><topic>Smoothing methods</topic><topic>Training</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lichtle, Nathan</creatorcontrib><creatorcontrib>Vinitsky, Eugene</creatorcontrib><creatorcontrib>Nice, Matthew</creatorcontrib><creatorcontrib>Bhadani, Rahul</creatorcontrib><creatorcontrib>Bunting, Matthew</creatorcontrib><creatorcontrib>Wu, Fangyu</creatorcontrib><creatorcontrib>Piccoli, Benedetto</creatorcontrib><creatorcontrib>Seibold, Benjamin</creatorcontrib><creatorcontrib>Work, Daniel B.</creatorcontrib><creatorcontrib>Lee, Jonathan W.</creatorcontrib><creatorcontrib>Sprinkle, Jonathan</creatorcontrib><creatorcontrib>Bayen, Alexandre M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lichtle, Nathan</au><au>Vinitsky, Eugene</au><au>Nice, Matthew</au><au>Bhadani, Rahul</au><au>Bunting, Matthew</au><au>Wu, Fangyu</au><au>Piccoli, Benedetto</au><au>Seibold, Benjamin</au><au>Work, Daniel B.</au><au>Lee, Jonathan W.</au><au>Sprinkle, Jonathan</au><au>Bayen, Alexandre M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From Sim to Real: A Pipeline for Training and Deploying Traffic Smoothing Cruise Controllers</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2024</date><risdate>2024</risdate><volume>40</volume><spage>4490</spage><epage>4505</epage><pages>4490-4505</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>Designing and validating controllers for connected and automated vehicles to enhance traffic flow presents significant challenges, from the complexity of replicating real-world stop-and-go traffic dynamics in simulation, to the intricacies involved in transitioning from simulation to actual deployment. In this work, we present a full pipeline from data collection to controller deployment. Specifically, we collect 772 km of driving data from the I-24 in Tennessee, and use it to build a one-lane simulator, placing simulated vehicles behind real-world trajectories. Using policy-gradient methods with an asymmetric critic, we improve fuel efficiency by over 10% when simulating congested scenarios. Our comprehensive approach includes reinforcement learning for controller training, software verification, hardware validation and setup, and navigating various sim-to-real challenges. Furthermore, we analyze the controller's behavior and wave-smoothing properties, and deploy it on four Toyota Rav4's in a real-world validation experiment on the I-24. Finally, we release the driving dataset (Nice et al., 2021), the simulator and the trained controller (Lichtlé et al., 2022), to enable future benchmarking and controller design.</abstract><pub>IEEE</pub><doi>10.1109/TRO.2024.3463407</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3932-761X</orcidid><orcidid>https://orcid.org/0000-0002-7633-5910</orcidid><orcidid>https://orcid.org/0000-0002-5521-6517</orcidid><orcidid>https://orcid.org/0000-0002-6000-5394</orcidid><orcidid>https://orcid.org/0000-0002-7403-6458</orcidid><orcidid>https://orcid.org/0000-0003-0565-2158</orcidid><orcidid>https://orcid.org/0000-0003-2879-6402</orcidid><orcidid>https://orcid.org/0000-0003-3609-1760</orcidid><orcidid>https://orcid.org/0000-0002-6697-222X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1552-3098 |
ispartof | IEEE transactions on robotics, 2024, Vol.40, p.4490-4505 |
issn | 1552-3098 1941-0468 |
language | eng |
recordid | cdi_ieee_primary_10683987 |
source | IEEE Electronic Library (IEL) |
subjects | Autonomous vehicle navigation energy and environment-aware automation Hardware intelligent transportation systems Pipelines reinforcement learning (RL) Road transportation Sensors Smoothing methods Training Trajectory |
title | From Sim to Real: A Pipeline for Training and Deploying Traffic Smoothing Cruise Controllers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A21%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20Sim%20to%20Real:%20A%20Pipeline%20for%20Training%20and%20Deploying%20Traffic%20Smoothing%20Cruise%20Controllers&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Lichtle,%20Nathan&rft.date=2024&rft.volume=40&rft.spage=4490&rft.epage=4505&rft.pages=4490-4505&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2024.3463407&rft_dat=%3Ccrossref_RIE%3E10_1109_TRO_2024_3463407%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10683987&rfr_iscdi=true |