From Sim to Real: A Pipeline for Training and Deploying Traffic Smoothing Cruise Controllers

Designing and validating controllers for connected and automated vehicles to enhance traffic flow presents significant challenges, from the complexity of replicating real-world stop-and-go traffic dynamics in simulation, to the intricacies involved in transitioning from simulation to actual deployme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2024, Vol.40, p.4490-4505
Hauptverfasser: Lichtle, Nathan, Vinitsky, Eugene, Nice, Matthew, Bhadani, Rahul, Bunting, Matthew, Wu, Fangyu, Piccoli, Benedetto, Seibold, Benjamin, Work, Daniel B., Lee, Jonathan W., Sprinkle, Jonathan, Bayen, Alexandre M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4505
container_issue
container_start_page 4490
container_title IEEE transactions on robotics
container_volume 40
creator Lichtle, Nathan
Vinitsky, Eugene
Nice, Matthew
Bhadani, Rahul
Bunting, Matthew
Wu, Fangyu
Piccoli, Benedetto
Seibold, Benjamin
Work, Daniel B.
Lee, Jonathan W.
Sprinkle, Jonathan
Bayen, Alexandre M.
description Designing and validating controllers for connected and automated vehicles to enhance traffic flow presents significant challenges, from the complexity of replicating real-world stop-and-go traffic dynamics in simulation, to the intricacies involved in transitioning from simulation to actual deployment. In this work, we present a full pipeline from data collection to controller deployment. Specifically, we collect 772 km of driving data from the I-24 in Tennessee, and use it to build a one-lane simulator, placing simulated vehicles behind real-world trajectories. Using policy-gradient methods with an asymmetric critic, we improve fuel efficiency by over 10% when simulating congested scenarios. Our comprehensive approach includes reinforcement learning for controller training, software verification, hardware validation and setup, and navigating various sim-to-real challenges. Furthermore, we analyze the controller's behavior and wave-smoothing properties, and deploy it on four Toyota Rav4's in a real-world validation experiment on the I-24. Finally, we release the driving dataset (Nice et al., 2021), the simulator and the trained controller (Lichtlé et al., 2022), to enable future benchmarking and controller design.
doi_str_mv 10.1109/TRO.2024.3463407
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10683987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10683987</ieee_id><sourcerecordid>10_1109_TRO_2024_3463407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-48dd63429328b1b0726f99d7100616d84d88b7eb6b65b9a4cecc6d5f5353279e3</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhC0EEqVw58DBfyDFr_jBrQoUkCoVteWGFCXxGoySuLLDof-eROXAaXdHM6vRh9AtJQtKibnfbzcLRphYcCG5IOoMzagRNCNC6vNxz3OWcWL0JbpK6ZuMTkP4DH2sYujwznd4CHgLVfuAl_jNH6D1PWAXIt7Hyve-_8RVb_EjHNpwnK5Rds43eNeFMHxNShF_fAJchH6IoW0hpmt04ao2wc3fnKP31dO-eMnWm-fXYrnOGirUkAlt7diZGc50TWuimHTGWEUJkVRaLazWtYJa1jKvTSUaaBppc5fznDNlgM8ROf1tYkgpgisP0XdVPJaUlBOdcqRTTnTKPzpj5O4U8QDwzy41N1rxX8eeYH8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>From Sim to Real: A Pipeline for Training and Deploying Traffic Smoothing Cruise Controllers</title><source>IEEE Electronic Library (IEL)</source><creator>Lichtle, Nathan ; Vinitsky, Eugene ; Nice, Matthew ; Bhadani, Rahul ; Bunting, Matthew ; Wu, Fangyu ; Piccoli, Benedetto ; Seibold, Benjamin ; Work, Daniel B. ; Lee, Jonathan W. ; Sprinkle, Jonathan ; Bayen, Alexandre M.</creator><creatorcontrib>Lichtle, Nathan ; Vinitsky, Eugene ; Nice, Matthew ; Bhadani, Rahul ; Bunting, Matthew ; Wu, Fangyu ; Piccoli, Benedetto ; Seibold, Benjamin ; Work, Daniel B. ; Lee, Jonathan W. ; Sprinkle, Jonathan ; Bayen, Alexandre M.</creatorcontrib><description>Designing and validating controllers for connected and automated vehicles to enhance traffic flow presents significant challenges, from the complexity of replicating real-world stop-and-go traffic dynamics in simulation, to the intricacies involved in transitioning from simulation to actual deployment. In this work, we present a full pipeline from data collection to controller deployment. Specifically, we collect 772 km of driving data from the I-24 in Tennessee, and use it to build a one-lane simulator, placing simulated vehicles behind real-world trajectories. Using policy-gradient methods with an asymmetric critic, we improve fuel efficiency by over 10% when simulating congested scenarios. Our comprehensive approach includes reinforcement learning for controller training, software verification, hardware validation and setup, and navigating various sim-to-real challenges. Furthermore, we analyze the controller's behavior and wave-smoothing properties, and deploy it on four Toyota Rav4's in a real-world validation experiment on the I-24. Finally, we release the driving dataset (Nice et al., 2021), the simulator and the trained controller (Lichtlé et al., 2022), to enable future benchmarking and controller design.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2024.3463407</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>IEEE</publisher><subject>Autonomous vehicle navigation ; energy and environment-aware automation ; Hardware ; intelligent transportation systems ; Pipelines ; reinforcement learning (RL) ; Road transportation ; Sensors ; Smoothing methods ; Training ; Trajectory</subject><ispartof>IEEE transactions on robotics, 2024, Vol.40, p.4490-4505</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c147t-48dd63429328b1b0726f99d7100616d84d88b7eb6b65b9a4cecc6d5f5353279e3</cites><orcidid>0000-0003-3932-761X ; 0000-0002-7633-5910 ; 0000-0002-5521-6517 ; 0000-0002-6000-5394 ; 0000-0002-7403-6458 ; 0000-0003-0565-2158 ; 0000-0003-2879-6402 ; 0000-0003-3609-1760 ; 0000-0002-6697-222X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10683987$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10683987$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lichtle, Nathan</creatorcontrib><creatorcontrib>Vinitsky, Eugene</creatorcontrib><creatorcontrib>Nice, Matthew</creatorcontrib><creatorcontrib>Bhadani, Rahul</creatorcontrib><creatorcontrib>Bunting, Matthew</creatorcontrib><creatorcontrib>Wu, Fangyu</creatorcontrib><creatorcontrib>Piccoli, Benedetto</creatorcontrib><creatorcontrib>Seibold, Benjamin</creatorcontrib><creatorcontrib>Work, Daniel B.</creatorcontrib><creatorcontrib>Lee, Jonathan W.</creatorcontrib><creatorcontrib>Sprinkle, Jonathan</creatorcontrib><creatorcontrib>Bayen, Alexandre M.</creatorcontrib><title>From Sim to Real: A Pipeline for Training and Deploying Traffic Smoothing Cruise Controllers</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>Designing and validating controllers for connected and automated vehicles to enhance traffic flow presents significant challenges, from the complexity of replicating real-world stop-and-go traffic dynamics in simulation, to the intricacies involved in transitioning from simulation to actual deployment. In this work, we present a full pipeline from data collection to controller deployment. Specifically, we collect 772 km of driving data from the I-24 in Tennessee, and use it to build a one-lane simulator, placing simulated vehicles behind real-world trajectories. Using policy-gradient methods with an asymmetric critic, we improve fuel efficiency by over 10% when simulating congested scenarios. Our comprehensive approach includes reinforcement learning for controller training, software verification, hardware validation and setup, and navigating various sim-to-real challenges. Furthermore, we analyze the controller's behavior and wave-smoothing properties, and deploy it on four Toyota Rav4's in a real-world validation experiment on the I-24. Finally, we release the driving dataset (Nice et al., 2021), the simulator and the trained controller (Lichtlé et al., 2022), to enable future benchmarking and controller design.</description><subject>Autonomous vehicle navigation</subject><subject>energy and environment-aware automation</subject><subject>Hardware</subject><subject>intelligent transportation systems</subject><subject>Pipelines</subject><subject>reinforcement learning (RL)</subject><subject>Road transportation</subject><subject>Sensors</subject><subject>Smoothing methods</subject><subject>Training</subject><subject>Trajectory</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtPwzAQhC0EEqVw58DBfyDFr_jBrQoUkCoVteWGFCXxGoySuLLDof-eROXAaXdHM6vRh9AtJQtKibnfbzcLRphYcCG5IOoMzagRNCNC6vNxz3OWcWL0JbpK6ZuMTkP4DH2sYujwznd4CHgLVfuAl_jNH6D1PWAXIt7Hyve-_8RVb_EjHNpwnK5Rds43eNeFMHxNShF_fAJchH6IoW0hpmt04ao2wc3fnKP31dO-eMnWm-fXYrnOGirUkAlt7diZGc50TWuimHTGWEUJkVRaLazWtYJa1jKvTSUaaBppc5fznDNlgM8ROf1tYkgpgisP0XdVPJaUlBOdcqRTTnTKPzpj5O4U8QDwzy41N1rxX8eeYH8</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lichtle, Nathan</creator><creator>Vinitsky, Eugene</creator><creator>Nice, Matthew</creator><creator>Bhadani, Rahul</creator><creator>Bunting, Matthew</creator><creator>Wu, Fangyu</creator><creator>Piccoli, Benedetto</creator><creator>Seibold, Benjamin</creator><creator>Work, Daniel B.</creator><creator>Lee, Jonathan W.</creator><creator>Sprinkle, Jonathan</creator><creator>Bayen, Alexandre M.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3932-761X</orcidid><orcidid>https://orcid.org/0000-0002-7633-5910</orcidid><orcidid>https://orcid.org/0000-0002-5521-6517</orcidid><orcidid>https://orcid.org/0000-0002-6000-5394</orcidid><orcidid>https://orcid.org/0000-0002-7403-6458</orcidid><orcidid>https://orcid.org/0000-0003-0565-2158</orcidid><orcidid>https://orcid.org/0000-0003-2879-6402</orcidid><orcidid>https://orcid.org/0000-0003-3609-1760</orcidid><orcidid>https://orcid.org/0000-0002-6697-222X</orcidid></search><sort><creationdate>2024</creationdate><title>From Sim to Real: A Pipeline for Training and Deploying Traffic Smoothing Cruise Controllers</title><author>Lichtle, Nathan ; Vinitsky, Eugene ; Nice, Matthew ; Bhadani, Rahul ; Bunting, Matthew ; Wu, Fangyu ; Piccoli, Benedetto ; Seibold, Benjamin ; Work, Daniel B. ; Lee, Jonathan W. ; Sprinkle, Jonathan ; Bayen, Alexandre M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-48dd63429328b1b0726f99d7100616d84d88b7eb6b65b9a4cecc6d5f5353279e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autonomous vehicle navigation</topic><topic>energy and environment-aware automation</topic><topic>Hardware</topic><topic>intelligent transportation systems</topic><topic>Pipelines</topic><topic>reinforcement learning (RL)</topic><topic>Road transportation</topic><topic>Sensors</topic><topic>Smoothing methods</topic><topic>Training</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lichtle, Nathan</creatorcontrib><creatorcontrib>Vinitsky, Eugene</creatorcontrib><creatorcontrib>Nice, Matthew</creatorcontrib><creatorcontrib>Bhadani, Rahul</creatorcontrib><creatorcontrib>Bunting, Matthew</creatorcontrib><creatorcontrib>Wu, Fangyu</creatorcontrib><creatorcontrib>Piccoli, Benedetto</creatorcontrib><creatorcontrib>Seibold, Benjamin</creatorcontrib><creatorcontrib>Work, Daniel B.</creatorcontrib><creatorcontrib>Lee, Jonathan W.</creatorcontrib><creatorcontrib>Sprinkle, Jonathan</creatorcontrib><creatorcontrib>Bayen, Alexandre M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lichtle, Nathan</au><au>Vinitsky, Eugene</au><au>Nice, Matthew</au><au>Bhadani, Rahul</au><au>Bunting, Matthew</au><au>Wu, Fangyu</au><au>Piccoli, Benedetto</au><au>Seibold, Benjamin</au><au>Work, Daniel B.</au><au>Lee, Jonathan W.</au><au>Sprinkle, Jonathan</au><au>Bayen, Alexandre M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From Sim to Real: A Pipeline for Training and Deploying Traffic Smoothing Cruise Controllers</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2024</date><risdate>2024</risdate><volume>40</volume><spage>4490</spage><epage>4505</epage><pages>4490-4505</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>Designing and validating controllers for connected and automated vehicles to enhance traffic flow presents significant challenges, from the complexity of replicating real-world stop-and-go traffic dynamics in simulation, to the intricacies involved in transitioning from simulation to actual deployment. In this work, we present a full pipeline from data collection to controller deployment. Specifically, we collect 772 km of driving data from the I-24 in Tennessee, and use it to build a one-lane simulator, placing simulated vehicles behind real-world trajectories. Using policy-gradient methods with an asymmetric critic, we improve fuel efficiency by over 10% when simulating congested scenarios. Our comprehensive approach includes reinforcement learning for controller training, software verification, hardware validation and setup, and navigating various sim-to-real challenges. Furthermore, we analyze the controller's behavior and wave-smoothing properties, and deploy it on four Toyota Rav4's in a real-world validation experiment on the I-24. Finally, we release the driving dataset (Nice et al., 2021), the simulator and the trained controller (Lichtlé et al., 2022), to enable future benchmarking and controller design.</abstract><pub>IEEE</pub><doi>10.1109/TRO.2024.3463407</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3932-761X</orcidid><orcidid>https://orcid.org/0000-0002-7633-5910</orcidid><orcidid>https://orcid.org/0000-0002-5521-6517</orcidid><orcidid>https://orcid.org/0000-0002-6000-5394</orcidid><orcidid>https://orcid.org/0000-0002-7403-6458</orcidid><orcidid>https://orcid.org/0000-0003-0565-2158</orcidid><orcidid>https://orcid.org/0000-0003-2879-6402</orcidid><orcidid>https://orcid.org/0000-0003-3609-1760</orcidid><orcidid>https://orcid.org/0000-0002-6697-222X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2024, Vol.40, p.4490-4505
issn 1552-3098
1941-0468
language eng
recordid cdi_ieee_primary_10683987
source IEEE Electronic Library (IEL)
subjects Autonomous vehicle navigation
energy and environment-aware automation
Hardware
intelligent transportation systems
Pipelines
reinforcement learning (RL)
Road transportation
Sensors
Smoothing methods
Training
Trajectory
title From Sim to Real: A Pipeline for Training and Deploying Traffic Smoothing Cruise Controllers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A21%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20Sim%20to%20Real:%20A%20Pipeline%20for%20Training%20and%20Deploying%20Traffic%20Smoothing%20Cruise%20Controllers&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Lichtle,%20Nathan&rft.date=2024&rft.volume=40&rft.spage=4490&rft.epage=4505&rft.pages=4490-4505&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2024.3463407&rft_dat=%3Ccrossref_RIE%3E10_1109_TRO_2024_3463407%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10683987&rfr_iscdi=true