Privacy-Aware Design and Analysis of Drone Remote Identification Systems

A key component to enabling the safe, secure, and efficient operations of Uncrewed Aerial Systems (UAS), or drones, is the ability to surveil such vehicles in flight. Remote identification systems (e.g., Remote ID) are designed to serve such purposes, and lay the foundations for denser, more advance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2024-12, Vol.25 (12), p.21455-21468
Hauptverfasser: Huang, Hejun, Fang, Yuxuan, Mazotti, Billy, Kim, Joseph, Fa, Kaitlyn X., Li, Max Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21468
container_issue 12
container_start_page 21455
container_title IEEE transactions on intelligent transportation systems
container_volume 25
creator Huang, Hejun
Fang, Yuxuan
Mazotti, Billy
Kim, Joseph
Fa, Kaitlyn X.
Li, Max Z.
description A key component to enabling the safe, secure, and efficient operations of Uncrewed Aerial Systems (UAS), or drones, is the ability to surveil such vehicles in flight. Remote identification systems (e.g., Remote ID) are designed to serve such purposes, and lay the foundations for denser, more advanced UAS operations. However, given the individualized nature of many commonly-envisioned UAS use cases (e.g., door-to-door package delivery), the design of remote identification systems must consider the trade-offs between surveillance versus consumer privacy. To this end, we present a comprehensive method for first characterizing the surveillance coverage of remote identification systems, then integrating in privacy from the perspective of plausible deniability: Surveillance gaps present opportunities for enhanced trajectory privacy, but too many gaps hinder the original purpose-surveillance and safety-of remote identification systems. We apply our method to realistic urban geographies (San Francisco, New York City, Los Angeles) where future UAS operations may perform door-to-door package deliveries between vendors and consumers. We provide ranges for the number of remote identification receivers needed to cover 50-95% of simulated UAS trajectories, then compute a privacy score based on the level of afforded plausible deniability. Our design and analysis framework contribute to the integration of UAS into the future intelligent transportation and smart city landscape, and will be useful for airspace designers, UAS fleet operators, air navigation service providers, and city planners interested in ensuring vehicle safety while considering data usage and an individual's privacy.
doi_str_mv 10.1109/TITS.2024.3456032
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10682108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10682108</ieee_id><sourcerecordid>10682108</sourcerecordid><originalsourceid>FETCH-LOGICAL-i106t-99288e72eef952bb2c77a8cb760a6a8aaac48730e0aaf9a410a1b5f5fc4e99f63</originalsourceid><addsrcrecordid>eNotzMFKwzAYAOAcFJxzDyB4yAu0_kmTNjmWTV1hoGz1PP5mfySyptIUpW-vME_f7WPsXkAuBNjHtmkPuQSp8kLpEgp5xRZCS5VZ0HDDblP6BBBKC7Fg27cxfKObs_oHR-IbSuEjcownXkc8zykkPni-GYdIfE_9MBFvThSn4IPDKQyRH-Y0UZ_u2LXHc6LVv0v2_vzUrrfZ7vWlWde7LAgop8xaaQxVkshbLbtOuqpC47qqBCzRIKJTpiqAANFbVAJQdNpr7xRZ68tiyR4ubyCi49cYehzn499tpABT_ALtR0pd</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Privacy-Aware Design and Analysis of Drone Remote Identification Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Hejun ; Fang, Yuxuan ; Mazotti, Billy ; Kim, Joseph ; Fa, Kaitlyn X. ; Li, Max Z.</creator><creatorcontrib>Huang, Hejun ; Fang, Yuxuan ; Mazotti, Billy ; Kim, Joseph ; Fa, Kaitlyn X. ; Li, Max Z.</creatorcontrib><description>A key component to enabling the safe, secure, and efficient operations of Uncrewed Aerial Systems (UAS), or drones, is the ability to surveil such vehicles in flight. Remote identification systems (e.g., Remote ID) are designed to serve such purposes, and lay the foundations for denser, more advanced UAS operations. However, given the individualized nature of many commonly-envisioned UAS use cases (e.g., door-to-door package delivery), the design of remote identification systems must consider the trade-offs between surveillance versus consumer privacy. To this end, we present a comprehensive method for first characterizing the surveillance coverage of remote identification systems, then integrating in privacy from the perspective of plausible deniability: Surveillance gaps present opportunities for enhanced trajectory privacy, but too many gaps hinder the original purpose-surveillance and safety-of remote identification systems. We apply our method to realistic urban geographies (San Francisco, New York City, Los Angeles) where future UAS operations may perform door-to-door package deliveries between vendors and consumers. We provide ranges for the number of remote identification receivers needed to cover 50-95% of simulated UAS trajectories, then compute a privacy score based on the level of afforded plausible deniability. Our design and analysis framework contribute to the integration of UAS into the future intelligent transportation and smart city landscape, and will be useful for airspace designers, UAS fleet operators, air navigation service providers, and city planners interested in ensuring vehicle safety while considering data usage and an individual's privacy.</description><identifier>ISSN: 1524-9050</identifier><identifier>DOI: 10.1109/TITS.2024.3456032</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Drones ; Privacy ; Product delivery ; Real-time systems ; remote identification ; Routing ; Surveillance ; Trajectory ; trajectory privacy ; Uncrewed aerial systems</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-12, Vol.25 (12), p.21455-21468</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8969-6259 ; 0000-0003-3746-2105 ; 0000-0001-9292-5139 ; 0009-0003-0353-2985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10682108$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10682108$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Hejun</creatorcontrib><creatorcontrib>Fang, Yuxuan</creatorcontrib><creatorcontrib>Mazotti, Billy</creatorcontrib><creatorcontrib>Kim, Joseph</creatorcontrib><creatorcontrib>Fa, Kaitlyn X.</creatorcontrib><creatorcontrib>Li, Max Z.</creatorcontrib><title>Privacy-Aware Design and Analysis of Drone Remote Identification Systems</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>A key component to enabling the safe, secure, and efficient operations of Uncrewed Aerial Systems (UAS), or drones, is the ability to surveil such vehicles in flight. Remote identification systems (e.g., Remote ID) are designed to serve such purposes, and lay the foundations for denser, more advanced UAS operations. However, given the individualized nature of many commonly-envisioned UAS use cases (e.g., door-to-door package delivery), the design of remote identification systems must consider the trade-offs between surveillance versus consumer privacy. To this end, we present a comprehensive method for first characterizing the surveillance coverage of remote identification systems, then integrating in privacy from the perspective of plausible deniability: Surveillance gaps present opportunities for enhanced trajectory privacy, but too many gaps hinder the original purpose-surveillance and safety-of remote identification systems. We apply our method to realistic urban geographies (San Francisco, New York City, Los Angeles) where future UAS operations may perform door-to-door package deliveries between vendors and consumers. We provide ranges for the number of remote identification receivers needed to cover 50-95% of simulated UAS trajectories, then compute a privacy score based on the level of afforded plausible deniability. Our design and analysis framework contribute to the integration of UAS into the future intelligent transportation and smart city landscape, and will be useful for airspace designers, UAS fleet operators, air navigation service providers, and city planners interested in ensuring vehicle safety while considering data usage and an individual's privacy.</description><subject>Drones</subject><subject>Privacy</subject><subject>Product delivery</subject><subject>Real-time systems</subject><subject>remote identification</subject><subject>Routing</subject><subject>Surveillance</subject><subject>Trajectory</subject><subject>trajectory privacy</subject><subject>Uncrewed aerial systems</subject><issn>1524-9050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotzMFKwzAYAOAcFJxzDyB4yAu0_kmTNjmWTV1hoGz1PP5mfySyptIUpW-vME_f7WPsXkAuBNjHtmkPuQSp8kLpEgp5xRZCS5VZ0HDDblP6BBBKC7Fg27cxfKObs_oHR-IbSuEjcownXkc8zykkPni-GYdIfE_9MBFvThSn4IPDKQyRH-Y0UZ_u2LXHc6LVv0v2_vzUrrfZ7vWlWde7LAgop8xaaQxVkshbLbtOuqpC47qqBCzRIKJTpiqAANFbVAJQdNpr7xRZ68tiyR4ubyCi49cYehzn499tpABT_ALtR0pd</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Huang, Hejun</creator><creator>Fang, Yuxuan</creator><creator>Mazotti, Billy</creator><creator>Kim, Joseph</creator><creator>Fa, Kaitlyn X.</creator><creator>Li, Max Z.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0001-8969-6259</orcidid><orcidid>https://orcid.org/0000-0003-3746-2105</orcidid><orcidid>https://orcid.org/0000-0001-9292-5139</orcidid><orcidid>https://orcid.org/0009-0003-0353-2985</orcidid></search><sort><creationdate>202412</creationdate><title>Privacy-Aware Design and Analysis of Drone Remote Identification Systems</title><author>Huang, Hejun ; Fang, Yuxuan ; Mazotti, Billy ; Kim, Joseph ; Fa, Kaitlyn X. ; Li, Max Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i106t-99288e72eef952bb2c77a8cb760a6a8aaac48730e0aaf9a410a1b5f5fc4e99f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Drones</topic><topic>Privacy</topic><topic>Product delivery</topic><topic>Real-time systems</topic><topic>remote identification</topic><topic>Routing</topic><topic>Surveillance</topic><topic>Trajectory</topic><topic>trajectory privacy</topic><topic>Uncrewed aerial systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hejun</creatorcontrib><creatorcontrib>Fang, Yuxuan</creatorcontrib><creatorcontrib>Mazotti, Billy</creatorcontrib><creatorcontrib>Kim, Joseph</creatorcontrib><creatorcontrib>Fa, Kaitlyn X.</creatorcontrib><creatorcontrib>Li, Max Z.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Hejun</au><au>Fang, Yuxuan</au><au>Mazotti, Billy</au><au>Kim, Joseph</au><au>Fa, Kaitlyn X.</au><au>Li, Max Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Privacy-Aware Design and Analysis of Drone Remote Identification Systems</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-12</date><risdate>2024</risdate><volume>25</volume><issue>12</issue><spage>21455</spage><epage>21468</epage><pages>21455-21468</pages><issn>1524-9050</issn><coden>ITISFG</coden><abstract>A key component to enabling the safe, secure, and efficient operations of Uncrewed Aerial Systems (UAS), or drones, is the ability to surveil such vehicles in flight. Remote identification systems (e.g., Remote ID) are designed to serve such purposes, and lay the foundations for denser, more advanced UAS operations. However, given the individualized nature of many commonly-envisioned UAS use cases (e.g., door-to-door package delivery), the design of remote identification systems must consider the trade-offs between surveillance versus consumer privacy. To this end, we present a comprehensive method for first characterizing the surveillance coverage of remote identification systems, then integrating in privacy from the perspective of plausible deniability: Surveillance gaps present opportunities for enhanced trajectory privacy, but too many gaps hinder the original purpose-surveillance and safety-of remote identification systems. We apply our method to realistic urban geographies (San Francisco, New York City, Los Angeles) where future UAS operations may perform door-to-door package deliveries between vendors and consumers. We provide ranges for the number of remote identification receivers needed to cover 50-95% of simulated UAS trajectories, then compute a privacy score based on the level of afforded plausible deniability. Our design and analysis framework contribute to the integration of UAS into the future intelligent transportation and smart city landscape, and will be useful for airspace designers, UAS fleet operators, air navigation service providers, and city planners interested in ensuring vehicle safety while considering data usage and an individual's privacy.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3456032</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8969-6259</orcidid><orcidid>https://orcid.org/0000-0003-3746-2105</orcidid><orcidid>https://orcid.org/0000-0001-9292-5139</orcidid><orcidid>https://orcid.org/0009-0003-0353-2985</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2024-12, Vol.25 (12), p.21455-21468
issn 1524-9050
language eng
recordid cdi_ieee_primary_10682108
source IEEE Electronic Library (IEL)
subjects Drones
Privacy
Product delivery
Real-time systems
remote identification
Routing
Surveillance
Trajectory
trajectory privacy
Uncrewed aerial systems
title Privacy-Aware Design and Analysis of Drone Remote Identification Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Privacy-Aware%20Design%20and%20Analysis%20of%20Drone%20Remote%20Identification%20Systems&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Huang,%20Hejun&rft.date=2024-12&rft.volume=25&rft.issue=12&rft.spage=21455&rft.epage=21468&rft.pages=21455-21468&rft.issn=1524-9050&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3456032&rft_dat=%3Cieee_RIE%3E10682108%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10682108&rfr_iscdi=true