On Rate Distortion via Constrained Optimization of Estimated Mutual Information
We propose a new methodology for the estimation of the rate distortion function (RDF), considering both continuous and discrete reconstruction spaces. The approach is input-space agnostic and does not require prior knowledge of the source distribution, nor the distortion function. Thus, our method i...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.137970-137987 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 137987 |
---|---|
container_issue | |
container_start_page | 137970 |
container_title | IEEE access |
container_volume | 12 |
creator | Tsur, Dor Huleihel, Bashar Permuter, Haim H. |
description | We propose a new methodology for the estimation of the rate distortion function (RDF), considering both continuous and discrete reconstruction spaces. The approach is input-space agnostic and does not require prior knowledge of the source distribution, nor the distortion function. Thus, our method is a general solution to the RDF estimation problem, while existing works focus on a specific domain. The approach leverages neural estimation and constrained optimization of mutual information to optimize a generative model of the input distribution. In continuous spaces we learn a sample generating model, while a probability mass function model is proposed for discrete spaces. Formal guarantees of the proposed method are explored and implementation details are discussed. We demonstrate our method's superior performance on both high dimensional and large alphabet synthetic data. In contrast to existing works, our estimator readily adapts to the rate distortion perception framework, which is central to contemporary compression tasks. Consequently, our method strengthens the connection between information theory and machine learning, proposing new solutions to the problem of lossy compression. |
doi_str_mv | 10.1109/ACCESS.2024.3462853 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10681556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10681556</ieee_id><doaj_id>oai_doaj_org_article_20bdeb6876cc403c94b94a9253688ddd</doaj_id><sourcerecordid>3112228899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-f3efc4976a0f4c3752c697cdf3b021ea897f9c681c17d4b115993c4446f7f7d53</originalsourceid><addsrcrecordid>eNpNUdlOAjEUbYwmEuQL9GESn8Fu0-WRjKgkGBLR56bTxQyBKbaDiX69hSGGvtze5Zy7HABuEZwgBOXDtKpmq9UEQ0wnhDIsSnIBBhgxOSYlYZdn_2swSmkN8xM5VPIBWC7b4k13rnhsUhdi14S2-G50UYU2dVE3rbPFctc12-ZXH5PBF7OU_Yyxxeu-2-tNMW99iNtj_gZceb1JbnSyQ_DxNHuvXsaL5fO8mi7GBgvZjT1x3lDJmYaeGsJLbJjkxnpSQ4ycFpJ7aZhABnFLa4RKKYmhlDLPPbclGYJ5z2uDXqtdzAPFHxV0o46BED-VztuYjVMY1tbVTHBmDIXESFpLqiXO9xDCWpu57nuuXQxfe5c6tQ772ObxFUEIYyxE7j4EpK8yMaQUnf_viqA6CKF6IdRBCHUSIqPuelTjnDtD5NXKkpE_sBWEAQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112228899</pqid></control><display><type>article</type><title>On Rate Distortion via Constrained Optimization of Estimated Mutual Information</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tsur, Dor ; Huleihel, Bashar ; Permuter, Haim H.</creator><creatorcontrib>Tsur, Dor ; Huleihel, Bashar ; Permuter, Haim H.</creatorcontrib><description>We propose a new methodology for the estimation of the rate distortion function (RDF), considering both continuous and discrete reconstruction spaces. The approach is input-space agnostic and does not require prior knowledge of the source distribution, nor the distortion function. Thus, our method is a general solution to the RDF estimation problem, while existing works focus on a specific domain. The approach leverages neural estimation and constrained optimization of mutual information to optimize a generative model of the input distribution. In continuous spaces we learn a sample generating model, while a probability mass function model is proposed for discrete spaces. Formal guarantees of the proposed method are explored and implementation details are discussed. We demonstrate our method's superior performance on both high dimensional and large alphabet synthetic data. In contrast to existing works, our estimator readily adapts to the rate distortion perception framework, which is central to contemporary compression tasks. Consequently, our method strengthens the connection between information theory and machine learning, proposing new solutions to the problem of lossy compression.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3462853</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Alternating optimization ; Artificial neural networks ; Constraints ; Continuity (mathematics) ; Distortion ; Estimation ; generative modeling ; Information theory ; Machine learning ; MINE ; Mutual information ; neural distribution transformer ; neural estimation ; Optimization ; rate distortion perception ; Rate-distortion ; Resource description framework ; Synthetic data</subject><ispartof>IEEE access, 2024, Vol.12, p.137970-137987</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-f3efc4976a0f4c3752c697cdf3b021ea897f9c681c17d4b115993c4446f7f7d53</cites><orcidid>0000-0002-6561-4965 ; 0000-0001-9962-2384 ; 0000-0003-3170-3190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10681556$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Tsur, Dor</creatorcontrib><creatorcontrib>Huleihel, Bashar</creatorcontrib><creatorcontrib>Permuter, Haim H.</creatorcontrib><title>On Rate Distortion via Constrained Optimization of Estimated Mutual Information</title><title>IEEE access</title><addtitle>Access</addtitle><description>We propose a new methodology for the estimation of the rate distortion function (RDF), considering both continuous and discrete reconstruction spaces. The approach is input-space agnostic and does not require prior knowledge of the source distribution, nor the distortion function. Thus, our method is a general solution to the RDF estimation problem, while existing works focus on a specific domain. The approach leverages neural estimation and constrained optimization of mutual information to optimize a generative model of the input distribution. In continuous spaces we learn a sample generating model, while a probability mass function model is proposed for discrete spaces. Formal guarantees of the proposed method are explored and implementation details are discussed. We demonstrate our method's superior performance on both high dimensional and large alphabet synthetic data. In contrast to existing works, our estimator readily adapts to the rate distortion perception framework, which is central to contemporary compression tasks. Consequently, our method strengthens the connection between information theory and machine learning, proposing new solutions to the problem of lossy compression.</description><subject>Alternating optimization</subject><subject>Artificial neural networks</subject><subject>Constraints</subject><subject>Continuity (mathematics)</subject><subject>Distortion</subject><subject>Estimation</subject><subject>generative modeling</subject><subject>Information theory</subject><subject>Machine learning</subject><subject>MINE</subject><subject>Mutual information</subject><subject>neural distribution transformer</subject><subject>neural estimation</subject><subject>Optimization</subject><subject>rate distortion perception</subject><subject>Rate-distortion</subject><subject>Resource description framework</subject><subject>Synthetic data</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdlOAjEUbYwmEuQL9GESn8Fu0-WRjKgkGBLR56bTxQyBKbaDiX69hSGGvtze5Zy7HABuEZwgBOXDtKpmq9UEQ0wnhDIsSnIBBhgxOSYlYZdn_2swSmkN8xM5VPIBWC7b4k13rnhsUhdi14S2-G50UYU2dVE3rbPFctc12-ZXH5PBF7OU_Yyxxeu-2-tNMW99iNtj_gZceb1JbnSyQ_DxNHuvXsaL5fO8mi7GBgvZjT1x3lDJmYaeGsJLbJjkxnpSQ4ycFpJ7aZhABnFLa4RKKYmhlDLPPbclGYJ5z2uDXqtdzAPFHxV0o46BED-VztuYjVMY1tbVTHBmDIXESFpLqiXO9xDCWpu57nuuXQxfe5c6tQ772ObxFUEIYyxE7j4EpK8yMaQUnf_viqA6CKF6IdRBCHUSIqPuelTjnDtD5NXKkpE_sBWEAQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Tsur, Dor</creator><creator>Huleihel, Bashar</creator><creator>Permuter, Haim H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6561-4965</orcidid><orcidid>https://orcid.org/0000-0001-9962-2384</orcidid><orcidid>https://orcid.org/0000-0003-3170-3190</orcidid></search><sort><creationdate>2024</creationdate><title>On Rate Distortion via Constrained Optimization of Estimated Mutual Information</title><author>Tsur, Dor ; Huleihel, Bashar ; Permuter, Haim H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-f3efc4976a0f4c3752c697cdf3b021ea897f9c681c17d4b115993c4446f7f7d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alternating optimization</topic><topic>Artificial neural networks</topic><topic>Constraints</topic><topic>Continuity (mathematics)</topic><topic>Distortion</topic><topic>Estimation</topic><topic>generative modeling</topic><topic>Information theory</topic><topic>Machine learning</topic><topic>MINE</topic><topic>Mutual information</topic><topic>neural distribution transformer</topic><topic>neural estimation</topic><topic>Optimization</topic><topic>rate distortion perception</topic><topic>Rate-distortion</topic><topic>Resource description framework</topic><topic>Synthetic data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsur, Dor</creatorcontrib><creatorcontrib>Huleihel, Bashar</creatorcontrib><creatorcontrib>Permuter, Haim H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsur, Dor</au><au>Huleihel, Bashar</au><au>Permuter, Haim H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Rate Distortion via Constrained Optimization of Estimated Mutual Information</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>137970</spage><epage>137987</epage><pages>137970-137987</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>We propose a new methodology for the estimation of the rate distortion function (RDF), considering both continuous and discrete reconstruction spaces. The approach is input-space agnostic and does not require prior knowledge of the source distribution, nor the distortion function. Thus, our method is a general solution to the RDF estimation problem, while existing works focus on a specific domain. The approach leverages neural estimation and constrained optimization of mutual information to optimize a generative model of the input distribution. In continuous spaces we learn a sample generating model, while a probability mass function model is proposed for discrete spaces. Formal guarantees of the proposed method are explored and implementation details are discussed. We demonstrate our method's superior performance on both high dimensional and large alphabet synthetic data. In contrast to existing works, our estimator readily adapts to the rate distortion perception framework, which is central to contemporary compression tasks. Consequently, our method strengthens the connection between information theory and machine learning, proposing new solutions to the problem of lossy compression.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3462853</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6561-4965</orcidid><orcidid>https://orcid.org/0000-0001-9962-2384</orcidid><orcidid>https://orcid.org/0000-0003-3170-3190</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.137970-137987 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10681556 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Alternating optimization Artificial neural networks Constraints Continuity (mathematics) Distortion Estimation generative modeling Information theory Machine learning MINE Mutual information neural distribution transformer neural estimation Optimization rate distortion perception Rate-distortion Resource description framework Synthetic data |
title | On Rate Distortion via Constrained Optimization of Estimated Mutual Information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Rate%20Distortion%20via%20Constrained%20Optimization%20of%20Estimated%20Mutual%20Information&rft.jtitle=IEEE%20access&rft.au=Tsur,%20Dor&rft.date=2024&rft.volume=12&rft.spage=137970&rft.epage=137987&rft.pages=137970-137987&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3462853&rft_dat=%3Cproquest_ieee_%3E3112228899%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112228899&rft_id=info:pmid/&rft_ieee_id=10681556&rft_doaj_id=oai_doaj_org_article_20bdeb6876cc403c94b94a9253688ddd&rfr_iscdi=true |