On Rate Distortion via Constrained Optimization of Estimated Mutual Information

We propose a new methodology for the estimation of the rate distortion function (RDF), considering both continuous and discrete reconstruction spaces. The approach is input-space agnostic and does not require prior knowledge of the source distribution, nor the distortion function. Thus, our method i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.137970-137987
Hauptverfasser: Tsur, Dor, Huleihel, Bashar, Permuter, Haim H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 137987
container_issue
container_start_page 137970
container_title IEEE access
container_volume 12
creator Tsur, Dor
Huleihel, Bashar
Permuter, Haim H.
description We propose a new methodology for the estimation of the rate distortion function (RDF), considering both continuous and discrete reconstruction spaces. The approach is input-space agnostic and does not require prior knowledge of the source distribution, nor the distortion function. Thus, our method is a general solution to the RDF estimation problem, while existing works focus on a specific domain. The approach leverages neural estimation and constrained optimization of mutual information to optimize a generative model of the input distribution. In continuous spaces we learn a sample generating model, while a probability mass function model is proposed for discrete spaces. Formal guarantees of the proposed method are explored and implementation details are discussed. We demonstrate our method's superior performance on both high dimensional and large alphabet synthetic data. In contrast to existing works, our estimator readily adapts to the rate distortion perception framework, which is central to contemporary compression tasks. Consequently, our method strengthens the connection between information theory and machine learning, proposing new solutions to the problem of lossy compression.
doi_str_mv 10.1109/ACCESS.2024.3462853
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10681556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10681556</ieee_id><doaj_id>oai_doaj_org_article_20bdeb6876cc403c94b94a9253688ddd</doaj_id><sourcerecordid>3112228899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-f3efc4976a0f4c3752c697cdf3b021ea897f9c681c17d4b115993c4446f7f7d53</originalsourceid><addsrcrecordid>eNpNUdlOAjEUbYwmEuQL9GESn8Fu0-WRjKgkGBLR56bTxQyBKbaDiX69hSGGvtze5Zy7HABuEZwgBOXDtKpmq9UEQ0wnhDIsSnIBBhgxOSYlYZdn_2swSmkN8xM5VPIBWC7b4k13rnhsUhdi14S2-G50UYU2dVE3rbPFctc12-ZXH5PBF7OU_Yyxxeu-2-tNMW99iNtj_gZceb1JbnSyQ_DxNHuvXsaL5fO8mi7GBgvZjT1x3lDJmYaeGsJLbJjkxnpSQ4ycFpJ7aZhABnFLa4RKKYmhlDLPPbclGYJ5z2uDXqtdzAPFHxV0o46BED-VztuYjVMY1tbVTHBmDIXESFpLqiXO9xDCWpu57nuuXQxfe5c6tQ772ObxFUEIYyxE7j4EpK8yMaQUnf_viqA6CKF6IdRBCHUSIqPuelTjnDtD5NXKkpE_sBWEAQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112228899</pqid></control><display><type>article</type><title>On Rate Distortion via Constrained Optimization of Estimated Mutual Information</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tsur, Dor ; Huleihel, Bashar ; Permuter, Haim H.</creator><creatorcontrib>Tsur, Dor ; Huleihel, Bashar ; Permuter, Haim H.</creatorcontrib><description>We propose a new methodology for the estimation of the rate distortion function (RDF), considering both continuous and discrete reconstruction spaces. The approach is input-space agnostic and does not require prior knowledge of the source distribution, nor the distortion function. Thus, our method is a general solution to the RDF estimation problem, while existing works focus on a specific domain. The approach leverages neural estimation and constrained optimization of mutual information to optimize a generative model of the input distribution. In continuous spaces we learn a sample generating model, while a probability mass function model is proposed for discrete spaces. Formal guarantees of the proposed method are explored and implementation details are discussed. We demonstrate our method's superior performance on both high dimensional and large alphabet synthetic data. In contrast to existing works, our estimator readily adapts to the rate distortion perception framework, which is central to contemporary compression tasks. Consequently, our method strengthens the connection between information theory and machine learning, proposing new solutions to the problem of lossy compression.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3462853</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Alternating optimization ; Artificial neural networks ; Constraints ; Continuity (mathematics) ; Distortion ; Estimation ; generative modeling ; Information theory ; Machine learning ; MINE ; Mutual information ; neural distribution transformer ; neural estimation ; Optimization ; rate distortion perception ; Rate-distortion ; Resource description framework ; Synthetic data</subject><ispartof>IEEE access, 2024, Vol.12, p.137970-137987</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-f3efc4976a0f4c3752c697cdf3b021ea897f9c681c17d4b115993c4446f7f7d53</cites><orcidid>0000-0002-6561-4965 ; 0000-0001-9962-2384 ; 0000-0003-3170-3190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10681556$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Tsur, Dor</creatorcontrib><creatorcontrib>Huleihel, Bashar</creatorcontrib><creatorcontrib>Permuter, Haim H.</creatorcontrib><title>On Rate Distortion via Constrained Optimization of Estimated Mutual Information</title><title>IEEE access</title><addtitle>Access</addtitle><description>We propose a new methodology for the estimation of the rate distortion function (RDF), considering both continuous and discrete reconstruction spaces. The approach is input-space agnostic and does not require prior knowledge of the source distribution, nor the distortion function. Thus, our method is a general solution to the RDF estimation problem, while existing works focus on a specific domain. The approach leverages neural estimation and constrained optimization of mutual information to optimize a generative model of the input distribution. In continuous spaces we learn a sample generating model, while a probability mass function model is proposed for discrete spaces. Formal guarantees of the proposed method are explored and implementation details are discussed. We demonstrate our method's superior performance on both high dimensional and large alphabet synthetic data. In contrast to existing works, our estimator readily adapts to the rate distortion perception framework, which is central to contemporary compression tasks. Consequently, our method strengthens the connection between information theory and machine learning, proposing new solutions to the problem of lossy compression.</description><subject>Alternating optimization</subject><subject>Artificial neural networks</subject><subject>Constraints</subject><subject>Continuity (mathematics)</subject><subject>Distortion</subject><subject>Estimation</subject><subject>generative modeling</subject><subject>Information theory</subject><subject>Machine learning</subject><subject>MINE</subject><subject>Mutual information</subject><subject>neural distribution transformer</subject><subject>neural estimation</subject><subject>Optimization</subject><subject>rate distortion perception</subject><subject>Rate-distortion</subject><subject>Resource description framework</subject><subject>Synthetic data</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdlOAjEUbYwmEuQL9GESn8Fu0-WRjKgkGBLR56bTxQyBKbaDiX69hSGGvtze5Zy7HABuEZwgBOXDtKpmq9UEQ0wnhDIsSnIBBhgxOSYlYZdn_2swSmkN8xM5VPIBWC7b4k13rnhsUhdi14S2-G50UYU2dVE3rbPFctc12-ZXH5PBF7OU_Yyxxeu-2-tNMW99iNtj_gZceb1JbnSyQ_DxNHuvXsaL5fO8mi7GBgvZjT1x3lDJmYaeGsJLbJjkxnpSQ4ycFpJ7aZhABnFLa4RKKYmhlDLPPbclGYJ5z2uDXqtdzAPFHxV0o46BED-VztuYjVMY1tbVTHBmDIXESFpLqiXO9xDCWpu57nuuXQxfe5c6tQ772ObxFUEIYyxE7j4EpK8yMaQUnf_viqA6CKF6IdRBCHUSIqPuelTjnDtD5NXKkpE_sBWEAQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Tsur, Dor</creator><creator>Huleihel, Bashar</creator><creator>Permuter, Haim H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6561-4965</orcidid><orcidid>https://orcid.org/0000-0001-9962-2384</orcidid><orcidid>https://orcid.org/0000-0003-3170-3190</orcidid></search><sort><creationdate>2024</creationdate><title>On Rate Distortion via Constrained Optimization of Estimated Mutual Information</title><author>Tsur, Dor ; Huleihel, Bashar ; Permuter, Haim H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-f3efc4976a0f4c3752c697cdf3b021ea897f9c681c17d4b115993c4446f7f7d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alternating optimization</topic><topic>Artificial neural networks</topic><topic>Constraints</topic><topic>Continuity (mathematics)</topic><topic>Distortion</topic><topic>Estimation</topic><topic>generative modeling</topic><topic>Information theory</topic><topic>Machine learning</topic><topic>MINE</topic><topic>Mutual information</topic><topic>neural distribution transformer</topic><topic>neural estimation</topic><topic>Optimization</topic><topic>rate distortion perception</topic><topic>Rate-distortion</topic><topic>Resource description framework</topic><topic>Synthetic data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsur, Dor</creatorcontrib><creatorcontrib>Huleihel, Bashar</creatorcontrib><creatorcontrib>Permuter, Haim H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsur, Dor</au><au>Huleihel, Bashar</au><au>Permuter, Haim H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Rate Distortion via Constrained Optimization of Estimated Mutual Information</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>137970</spage><epage>137987</epage><pages>137970-137987</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>We propose a new methodology for the estimation of the rate distortion function (RDF), considering both continuous and discrete reconstruction spaces. The approach is input-space agnostic and does not require prior knowledge of the source distribution, nor the distortion function. Thus, our method is a general solution to the RDF estimation problem, while existing works focus on a specific domain. The approach leverages neural estimation and constrained optimization of mutual information to optimize a generative model of the input distribution. In continuous spaces we learn a sample generating model, while a probability mass function model is proposed for discrete spaces. Formal guarantees of the proposed method are explored and implementation details are discussed. We demonstrate our method's superior performance on both high dimensional and large alphabet synthetic data. In contrast to existing works, our estimator readily adapts to the rate distortion perception framework, which is central to contemporary compression tasks. Consequently, our method strengthens the connection between information theory and machine learning, proposing new solutions to the problem of lossy compression.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3462853</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6561-4965</orcidid><orcidid>https://orcid.org/0000-0001-9962-2384</orcidid><orcidid>https://orcid.org/0000-0003-3170-3190</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.137970-137987
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10681556
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Alternating optimization
Artificial neural networks
Constraints
Continuity (mathematics)
Distortion
Estimation
generative modeling
Information theory
Machine learning
MINE
Mutual information
neural distribution transformer
neural estimation
Optimization
rate distortion perception
Rate-distortion
Resource description framework
Synthetic data
title On Rate Distortion via Constrained Optimization of Estimated Mutual Information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Rate%20Distortion%20via%20Constrained%20Optimization%20of%20Estimated%20Mutual%20Information&rft.jtitle=IEEE%20access&rft.au=Tsur,%20Dor&rft.date=2024&rft.volume=12&rft.spage=137970&rft.epage=137987&rft.pages=137970-137987&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3462853&rft_dat=%3Cproquest_ieee_%3E3112228899%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112228899&rft_id=info:pmid/&rft_ieee_id=10681556&rft_doaj_id=oai_doaj_org_article_20bdeb6876cc403c94b94a9253688ddd&rfr_iscdi=true