Filter-Based Fully Distributed Output Regulation of Heterogeneous Learning Agents

This paper proposes a novel filter-based model-free reinforcement learning (RL) event-triggered control (ETC) method for the fully distributed robust leaderless cooperative output regulation (COR) of unknown heterogeneous multi-agent systems (MASs) with external disturbances over directed graphs. Fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2024-09, p.1-13
Hauptverfasser: Shi, Xiongtao, Li, Yanjie, Du, Chenglong, Chen, Chaoyang, Hua, Changchun, Gui, Weihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume
creator Shi, Xiongtao
Li, Yanjie
Du, Chenglong
Chen, Chaoyang
Hua, Changchun
Gui, Weihua
description This paper proposes a novel filter-based model-free reinforcement learning (RL) event-triggered control (ETC) method for the fully distributed robust leaderless cooperative output regulation (COR) of unknown heterogeneous multi-agent systems (MASs) with external disturbances over directed graphs. First, the fully distributed event-triggered observers are designed to generate an autonomous system for the robust leaderless COR, in which the frequency of signal transmission and computational burden are significantly reduced, and the Zeno behavior is strictly ruled out. Then, a filter-based model-free RL algorithm without integration operation is developed to obtain the solution of the internal model-based augmented algebraic Riccati equation (AARE) and to release the requirement of recording complete and continuous data. Moreover, with some adaptive parameters, the robust leaderless COR is solved in a fully distributed manner without involving any global information of directed MASs. Finally, simulation results on RLC circuits are illustrated to show the feasibility and effectiveness of the proposed control scheme.
doi_str_mv 10.1109/TCSI.2024.3457900
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10681222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10681222</ieee_id><sourcerecordid>10681222</sourcerecordid><originalsourceid>FETCH-LOGICAL-i106t-c4d453aa32c6937b77d8c92fac3199b92f168b5d443580928d429c611915ba2b3</originalsourceid><addsrcrecordid>eNotjNFKwzAYRnOh4Jw-gOBFXqA1_5-kTS5ndW5QGOq8HkmblkhtR5Nc7O0t6NX3ceAcQh6A5QBMPx2rz32ODEXOhSw1Y1dkBVLoTHFUN-Q2hG_GUDMOK_K-9UN0c_ZsgmvpNg3Dhb74EGdvU1zIIcVzivTD9Wkw0U8jnTq6c4sy9W50Uwq0dmYe_djTzUJiuCPXnRmCu__fNfnavh6rXVYf3vbVps48sCJmjWiF5MZwbArNS1uWrWo0dqbhoLVdHhTKylYILhXTqFqBuikANEhr0PI1efzreufc6Tz7HzNfTktbASLyXyCATLA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Filter-Based Fully Distributed Output Regulation of Heterogeneous Learning Agents</title><source>IEEE Electronic Library (IEL)</source><creator>Shi, Xiongtao ; Li, Yanjie ; Du, Chenglong ; Chen, Chaoyang ; Hua, Changchun ; Gui, Weihua</creator><creatorcontrib>Shi, Xiongtao ; Li, Yanjie ; Du, Chenglong ; Chen, Chaoyang ; Hua, Changchun ; Gui, Weihua</creatorcontrib><description>This paper proposes a novel filter-based model-free reinforcement learning (RL) event-triggered control (ETC) method for the fully distributed robust leaderless cooperative output regulation (COR) of unknown heterogeneous multi-agent systems (MASs) with external disturbances over directed graphs. First, the fully distributed event-triggered observers are designed to generate an autonomous system for the robust leaderless COR, in which the frequency of signal transmission and computational burden are significantly reduced, and the Zeno behavior is strictly ruled out. Then, a filter-based model-free RL algorithm without integration operation is developed to obtain the solution of the internal model-based augmented algebraic Riccati equation (AARE) and to release the requirement of recording complete and continuous data. Moreover, with some adaptive parameters, the robust leaderless COR is solved in a fully distributed manner without involving any global information of directed MASs. Finally, simulation results on RLC circuits are illustrated to show the feasibility and effectiveness of the proposed control scheme.</description><identifier>ISSN: 1549-8328</identifier><identifier>DOI: 10.1109/TCSI.2024.3457900</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>IEEE</publisher><subject>Directed graphs ; event-triggered control ; filter-based reinforcement learning algorithm ; Filtering theory ; fully distributed observer ; Heterogeneous multi-agent systems ; Observers ; Protocols ; Regulation ; robust leaderless cooperative output regulation ; Symmetric matrices ; Vectors</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2024-09, p.1-13</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>chenglong_du@csu.edu.cn ; autolyj@hit.edu.cn ; cch@ysu.edu.cn ; xiongtaoshi@stu.hit.edu.cn ; ouzk@163.com ; gwh@csu.edu.cn</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10681222$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10681222$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shi, Xiongtao</creatorcontrib><creatorcontrib>Li, Yanjie</creatorcontrib><creatorcontrib>Du, Chenglong</creatorcontrib><creatorcontrib>Chen, Chaoyang</creatorcontrib><creatorcontrib>Hua, Changchun</creatorcontrib><creatorcontrib>Gui, Weihua</creatorcontrib><title>Filter-Based Fully Distributed Output Regulation of Heterogeneous Learning Agents</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>This paper proposes a novel filter-based model-free reinforcement learning (RL) event-triggered control (ETC) method for the fully distributed robust leaderless cooperative output regulation (COR) of unknown heterogeneous multi-agent systems (MASs) with external disturbances over directed graphs. First, the fully distributed event-triggered observers are designed to generate an autonomous system for the robust leaderless COR, in which the frequency of signal transmission and computational burden are significantly reduced, and the Zeno behavior is strictly ruled out. Then, a filter-based model-free RL algorithm without integration operation is developed to obtain the solution of the internal model-based augmented algebraic Riccati equation (AARE) and to release the requirement of recording complete and continuous data. Moreover, with some adaptive parameters, the robust leaderless COR is solved in a fully distributed manner without involving any global information of directed MASs. Finally, simulation results on RLC circuits are illustrated to show the feasibility and effectiveness of the proposed control scheme.</description><subject>Directed graphs</subject><subject>event-triggered control</subject><subject>filter-based reinforcement learning algorithm</subject><subject>Filtering theory</subject><subject>fully distributed observer</subject><subject>Heterogeneous multi-agent systems</subject><subject>Observers</subject><subject>Protocols</subject><subject>Regulation</subject><subject>robust leaderless cooperative output regulation</subject><subject>Symmetric matrices</subject><subject>Vectors</subject><issn>1549-8328</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjNFKwzAYRnOh4Jw-gOBFXqA1_5-kTS5ndW5QGOq8HkmblkhtR5Nc7O0t6NX3ceAcQh6A5QBMPx2rz32ODEXOhSw1Y1dkBVLoTHFUN-Q2hG_GUDMOK_K-9UN0c_ZsgmvpNg3Dhb74EGdvU1zIIcVzivTD9Wkw0U8jnTq6c4sy9W50Uwq0dmYe_djTzUJiuCPXnRmCu__fNfnavh6rXVYf3vbVps48sCJmjWiF5MZwbArNS1uWrWo0dqbhoLVdHhTKylYILhXTqFqBuikANEhr0PI1efzreufc6Tz7HzNfTktbASLyXyCATLA</recordid><startdate>20240916</startdate><enddate>20240916</enddate><creator>Shi, Xiongtao</creator><creator>Li, Yanjie</creator><creator>Du, Chenglong</creator><creator>Chen, Chaoyang</creator><creator>Hua, Changchun</creator><creator>Gui, Weihua</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/chenglong_du@csu.edu.cn</orcidid><orcidid>https://orcid.org/autolyj@hit.edu.cn</orcidid><orcidid>https://orcid.org/cch@ysu.edu.cn</orcidid><orcidid>https://orcid.org/xiongtaoshi@stu.hit.edu.cn</orcidid><orcidid>https://orcid.org/ouzk@163.com</orcidid><orcidid>https://orcid.org/gwh@csu.edu.cn</orcidid></search><sort><creationdate>20240916</creationdate><title>Filter-Based Fully Distributed Output Regulation of Heterogeneous Learning Agents</title><author>Shi, Xiongtao ; Li, Yanjie ; Du, Chenglong ; Chen, Chaoyang ; Hua, Changchun ; Gui, Weihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i106t-c4d453aa32c6937b77d8c92fac3199b92f168b5d443580928d429c611915ba2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Directed graphs</topic><topic>event-triggered control</topic><topic>filter-based reinforcement learning algorithm</topic><topic>Filtering theory</topic><topic>fully distributed observer</topic><topic>Heterogeneous multi-agent systems</topic><topic>Observers</topic><topic>Protocols</topic><topic>Regulation</topic><topic>robust leaderless cooperative output regulation</topic><topic>Symmetric matrices</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Xiongtao</creatorcontrib><creatorcontrib>Li, Yanjie</creatorcontrib><creatorcontrib>Du, Chenglong</creatorcontrib><creatorcontrib>Chen, Chaoyang</creatorcontrib><creatorcontrib>Hua, Changchun</creatorcontrib><creatorcontrib>Gui, Weihua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shi, Xiongtao</au><au>Li, Yanjie</au><au>Du, Chenglong</au><au>Chen, Chaoyang</au><au>Hua, Changchun</au><au>Gui, Weihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Filter-Based Fully Distributed Output Regulation of Heterogeneous Learning Agents</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2024-09-16</date><risdate>2024</risdate><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1549-8328</issn><coden>ITCSCH</coden><abstract>This paper proposes a novel filter-based model-free reinforcement learning (RL) event-triggered control (ETC) method for the fully distributed robust leaderless cooperative output regulation (COR) of unknown heterogeneous multi-agent systems (MASs) with external disturbances over directed graphs. First, the fully distributed event-triggered observers are designed to generate an autonomous system for the robust leaderless COR, in which the frequency of signal transmission and computational burden are significantly reduced, and the Zeno behavior is strictly ruled out. Then, a filter-based model-free RL algorithm without integration operation is developed to obtain the solution of the internal model-based augmented algebraic Riccati equation (AARE) and to release the requirement of recording complete and continuous data. Moreover, with some adaptive parameters, the robust leaderless COR is solved in a fully distributed manner without involving any global information of directed MASs. Finally, simulation results on RLC circuits are illustrated to show the feasibility and effectiveness of the proposed control scheme.</abstract><pub>IEEE</pub><doi>10.1109/TCSI.2024.3457900</doi><tpages>13</tpages><orcidid>https://orcid.org/chenglong_du@csu.edu.cn</orcidid><orcidid>https://orcid.org/autolyj@hit.edu.cn</orcidid><orcidid>https://orcid.org/cch@ysu.edu.cn</orcidid><orcidid>https://orcid.org/xiongtaoshi@stu.hit.edu.cn</orcidid><orcidid>https://orcid.org/ouzk@163.com</orcidid><orcidid>https://orcid.org/gwh@csu.edu.cn</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2024-09, p.1-13
issn 1549-8328
language eng
recordid cdi_ieee_primary_10681222
source IEEE Electronic Library (IEL)
subjects Directed graphs
event-triggered control
filter-based reinforcement learning algorithm
Filtering theory
fully distributed observer
Heterogeneous multi-agent systems
Observers
Protocols
Regulation
robust leaderless cooperative output regulation
Symmetric matrices
Vectors
title Filter-Based Fully Distributed Output Regulation of Heterogeneous Learning Agents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A29%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Filter-Based%20Fully%20Distributed%20Output%20Regulation%20of%20Heterogeneous%20Learning%20Agents&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Shi,%20Xiongtao&rft.date=2024-09-16&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1549-8328&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2024.3457900&rft_dat=%3Cieee_RIE%3E10681222%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10681222&rfr_iscdi=true