Study of the Impact of RDF on n-Type SOI Nanowire FET via Quantum-Corrected Monte Carlo Device Simulations

This article investigates the impact of random dopant fluctuation (RDF) on the current of a n-type nanowire silicon on insulator (SOI) triple-gate transistor. This study was performed employing a quantum-corrected Monte Carlo (MC) device simulator that was successfully assessed by comparing the simu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2024-10, Vol.71 (10), p.5838-5844
Hauptverfasser: Soares, Caroline S., Rossetto, Alan C. J., Furtado, Gabriela F., Pavanello, Marcelo A., Vasileska, Dragica, Wirth, Gilson I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5844
container_issue 10
container_start_page 5838
container_title IEEE transactions on electron devices
container_volume 71
creator Soares, Caroline S.
Rossetto, Alan C. J.
Furtado, Gabriela F.
Pavanello, Marcelo A.
Vasileska, Dragica
Wirth, Gilson I.
description This article investigates the impact of random dopant fluctuation (RDF) on the current of a n-type nanowire silicon on insulator (SOI) triple-gate transistor. This study was performed employing a quantum-corrected Monte Carlo (MC) device simulator that was successfully assessed by comparing the simulation characteristics curves with experimental data. The results demonstrate that the impact of a single dopant atom on the transistor's current depends on the dopant position along the channel length, fin height, and width. A random dopant in the channel affects the electrostatics, the electron density, and the electron mobility, thus degrading the transistor current. The study was performed for {V}_{\text {GS}} = {0.5} V, and {V}_{\text {DS}} = {0.2} V, {V}_{\text {DS}} = {0.5} V, and {V}_{\text {DS}} = {0.7} V. For {V}_{\text {DS}} = {0.2} V, the maximum current variation was observed when the single dopant is placed in the middle of the channel length and the middle of fin height and width. For this case, the variation is 19.47% with respect to the nominal current. For {V}_{\text {DS}} = {0.5} V and {V}_{\text {DS}} = {0.7} V, the maximum current variation was observed when the dopant is closer to the source region, and the current variation is, respectively, 20.60% and 21.48%.
doi_str_mv 10.1109/TED.2024.3440276
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10681215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10681215</ieee_id><sourcerecordid>10_1109_TED_2024_3440276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-3ecea3e3839a2d82d52515821ae28d1ab9c3b402d3e213ef642d8de9b5aea2b83</originalsourceid><addsrcrecordid>eNpNkE9PwkAUxDdGExG9e_CwX2Bx_7W0R1NASVCi4Ll5bV_jEtol2y2m394lcPD0MsnMZN6PkEfBJ0Lw9Hk7n00kl3qitOZyGl-RkYiiKUtjHV-TEeciYalK1C2567pdkLHWckR2G99XA7U19T9Il80BSn9SX7MFtS1t2XY4IN2sl_QDWvtrHNLFfEuPBuhnD63vG5ZZ57D0WNF323qkGbi9pTM8mjIkTdPvwRvbdvfkpoZ9hw-XOybfoSp7Y6v16zJ7WbFS6KlnCksEhWFqCrJKZBXJSESJFIAyqQQUaamK8GKlUAqFdayDq8K0iABBFokaE37uLZ3tOod1fnCmATfkgucnVnlglZ9Y5RdWIfJ0jhhE_GePEyFFpP4AaLhlKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Study of the Impact of RDF on n-Type SOI Nanowire FET via Quantum-Corrected Monte Carlo Device Simulations</title><source>IEEE Electronic Library (IEL)</source><creator>Soares, Caroline S. ; Rossetto, Alan C. J. ; Furtado, Gabriela F. ; Pavanello, Marcelo A. ; Vasileska, Dragica ; Wirth, Gilson I.</creator><creatorcontrib>Soares, Caroline S. ; Rossetto, Alan C. J. ; Furtado, Gabriela F. ; Pavanello, Marcelo A. ; Vasileska, Dragica ; Wirth, Gilson I.</creatorcontrib><description><![CDATA[This article investigates the impact of random dopant fluctuation (RDF) on the current of a n-type nanowire silicon on insulator (SOI) triple-gate transistor. This study was performed employing a quantum-corrected Monte Carlo (MC) device simulator that was successfully assessed by comparing the simulation characteristics curves with experimental data. The results demonstrate that the impact of a single dopant atom on the transistor's current depends on the dopant position along the channel length, fin height, and width. A random dopant in the channel affects the electrostatics, the electron density, and the electron mobility, thus degrading the transistor current. The study was performed for <inline-formula> <tex-math notation="LaTeX">{V}_{\text {GS}} = {0.5} </tex-math></inline-formula> V, and <inline-formula> <tex-math notation="LaTeX">{V}_{\text {DS}} = {0.2} </tex-math></inline-formula> V, <inline-formula> <tex-math notation="LaTeX">{V}_{\text {DS}} = {0.5} </tex-math></inline-formula> V, and <inline-formula> <tex-math notation="LaTeX">{V}_{\text {DS}} = {0.7} </tex-math></inline-formula> V. For <inline-formula> <tex-math notation="LaTeX">{V}_{\text {DS}} = {0.2} </tex-math></inline-formula> V, the maximum current variation was observed when the single dopant is placed in the middle of the channel length and the middle of fin height and width. For this case, the variation is 19.47% with respect to the nominal current. For <inline-formula> <tex-math notation="LaTeX">{V}_{\text {DS}} = {0.5} </tex-math></inline-formula> V and <inline-formula> <tex-math notation="LaTeX">{V}_{\text {DS}} = {0.7} </tex-math></inline-formula> V, the maximum current variation was observed when the dopant is closer to the source region, and the current variation is, respectively, 20.60% and 21.48%.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2024.3440276</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electric potential ; Electrons ; Field effect transistors ; Mathematical models ; Quantum-corrected Monte Carlo (MC) simulation ; random dopant ; Resource description framework ; Semiconductor process modeling ; silicon on insulator (SOI) nanowire ; Silicon-on-insulator ; transistor variability</subject><ispartof>IEEE transactions on electron devices, 2024-10, Vol.71 (10), p.5838-5844</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c147t-3ecea3e3839a2d82d52515821ae28d1ab9c3b402d3e213ef642d8de9b5aea2b83</cites><orcidid>0000-0002-4990-5113 ; 0000-0003-2099-9336 ; 0000-0003-4769-5535 ; 0000-0003-1361-3650 ; 0000-0001-5749-2403 ; 0000-0003-1215-3197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10681215$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10681215$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Soares, Caroline S.</creatorcontrib><creatorcontrib>Rossetto, Alan C. J.</creatorcontrib><creatorcontrib>Furtado, Gabriela F.</creatorcontrib><creatorcontrib>Pavanello, Marcelo A.</creatorcontrib><creatorcontrib>Vasileska, Dragica</creatorcontrib><creatorcontrib>Wirth, Gilson I.</creatorcontrib><title>Study of the Impact of RDF on n-Type SOI Nanowire FET via Quantum-Corrected Monte Carlo Device Simulations</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[This article investigates the impact of random dopant fluctuation (RDF) on the current of a n-type nanowire silicon on insulator (SOI) triple-gate transistor. This study was performed employing a quantum-corrected Monte Carlo (MC) device simulator that was successfully assessed by comparing the simulation characteristics curves with experimental data. The results demonstrate that the impact of a single dopant atom on the transistor's current depends on the dopant position along the channel length, fin height, and width. A random dopant in the channel affects the electrostatics, the electron density, and the electron mobility, thus degrading the transistor current. The study was performed for <inline-formula> <tex-math notation="LaTeX">{V}_{\text {GS}} = {0.5} </tex-math></inline-formula> V, and <inline-formula> <tex-math notation="LaTeX">{V}_{\text {DS}} = {0.2} </tex-math></inline-formula> V, <inline-formula> <tex-math notation="LaTeX">{V}_{\text {DS}} = {0.5} </tex-math></inline-formula> V, and <inline-formula> <tex-math notation="LaTeX">{V}_{\text {DS}} = {0.7} </tex-math></inline-formula> V. For <inline-formula> <tex-math notation="LaTeX">{V}_{\text {DS}} = {0.2} </tex-math></inline-formula> V, the maximum current variation was observed when the single dopant is placed in the middle of the channel length and the middle of fin height and width. For this case, the variation is 19.47% with respect to the nominal current. For <inline-formula> <tex-math notation="LaTeX">{V}_{\text {DS}} = {0.5} </tex-math></inline-formula> V and <inline-formula> <tex-math notation="LaTeX">{V}_{\text {DS}} = {0.7} </tex-math></inline-formula> V, the maximum current variation was observed when the dopant is closer to the source region, and the current variation is, respectively, 20.60% and 21.48%.]]></description><subject>Electric potential</subject><subject>Electrons</subject><subject>Field effect transistors</subject><subject>Mathematical models</subject><subject>Quantum-corrected Monte Carlo (MC) simulation</subject><subject>random dopant</subject><subject>Resource description framework</subject><subject>Semiconductor process modeling</subject><subject>silicon on insulator (SOI) nanowire</subject><subject>Silicon-on-insulator</subject><subject>transistor variability</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9PwkAUxDdGExG9e_CwX2Bx_7W0R1NASVCi4Ll5bV_jEtol2y2m394lcPD0MsnMZN6PkEfBJ0Lw9Hk7n00kl3qitOZyGl-RkYiiKUtjHV-TEeciYalK1C2567pdkLHWckR2G99XA7U19T9Il80BSn9SX7MFtS1t2XY4IN2sl_QDWvtrHNLFfEuPBuhnD63vG5ZZ57D0WNF323qkGbi9pTM8mjIkTdPvwRvbdvfkpoZ9hw-XOybfoSp7Y6v16zJ7WbFS6KlnCksEhWFqCrJKZBXJSESJFIAyqQQUaamK8GKlUAqFdayDq8K0iABBFokaE37uLZ3tOod1fnCmATfkgucnVnlglZ9Y5RdWIfJ0jhhE_GePEyFFpP4AaLhlKQ</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Soares, Caroline S.</creator><creator>Rossetto, Alan C. J.</creator><creator>Furtado, Gabriela F.</creator><creator>Pavanello, Marcelo A.</creator><creator>Vasileska, Dragica</creator><creator>Wirth, Gilson I.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4990-5113</orcidid><orcidid>https://orcid.org/0000-0003-2099-9336</orcidid><orcidid>https://orcid.org/0000-0003-4769-5535</orcidid><orcidid>https://orcid.org/0000-0003-1361-3650</orcidid><orcidid>https://orcid.org/0000-0001-5749-2403</orcidid><orcidid>https://orcid.org/0000-0003-1215-3197</orcidid></search><sort><creationdate>202410</creationdate><title>Study of the Impact of RDF on n-Type SOI Nanowire FET via Quantum-Corrected Monte Carlo Device Simulations</title><author>Soares, Caroline S. ; Rossetto, Alan C. J. ; Furtado, Gabriela F. ; Pavanello, Marcelo A. ; Vasileska, Dragica ; Wirth, Gilson I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-3ecea3e3839a2d82d52515821ae28d1ab9c3b402d3e213ef642d8de9b5aea2b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electric potential</topic><topic>Electrons</topic><topic>Field effect transistors</topic><topic>Mathematical models</topic><topic>Quantum-corrected Monte Carlo (MC) simulation</topic><topic>random dopant</topic><topic>Resource description framework</topic><topic>Semiconductor process modeling</topic><topic>silicon on insulator (SOI) nanowire</topic><topic>Silicon-on-insulator</topic><topic>transistor variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soares, Caroline S.</creatorcontrib><creatorcontrib>Rossetto, Alan C. J.</creatorcontrib><creatorcontrib>Furtado, Gabriela F.</creatorcontrib><creatorcontrib>Pavanello, Marcelo A.</creatorcontrib><creatorcontrib>Vasileska, Dragica</creatorcontrib><creatorcontrib>Wirth, Gilson I.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Soares, Caroline S.</au><au>Rossetto, Alan C. J.</au><au>Furtado, Gabriela F.</au><au>Pavanello, Marcelo A.</au><au>Vasileska, Dragica</au><au>Wirth, Gilson I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of the Impact of RDF on n-Type SOI Nanowire FET via Quantum-Corrected Monte Carlo Device Simulations</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2024-10</date><risdate>2024</risdate><volume>71</volume><issue>10</issue><spage>5838</spage><epage>5844</epage><pages>5838-5844</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[This article investigates the impact of random dopant fluctuation (RDF) on the current of a n-type nanowire silicon on insulator (SOI) triple-gate transistor. This study was performed employing a quantum-corrected Monte Carlo (MC) device simulator that was successfully assessed by comparing the simulation characteristics curves with experimental data. The results demonstrate that the impact of a single dopant atom on the transistor's current depends on the dopant position along the channel length, fin height, and width. A random dopant in the channel affects the electrostatics, the electron density, and the electron mobility, thus degrading the transistor current. The study was performed for <inline-formula> <tex-math notation="LaTeX">{V}_{\text {GS}} = {0.5} </tex-math></inline-formula> V, and <inline-formula> <tex-math notation="LaTeX">{V}_{\text {DS}} = {0.2} </tex-math></inline-formula> V, <inline-formula> <tex-math notation="LaTeX">{V}_{\text {DS}} = {0.5} </tex-math></inline-formula> V, and <inline-formula> <tex-math notation="LaTeX">{V}_{\text {DS}} = {0.7} </tex-math></inline-formula> V. For <inline-formula> <tex-math notation="LaTeX">{V}_{\text {DS}} = {0.2} </tex-math></inline-formula> V, the maximum current variation was observed when the single dopant is placed in the middle of the channel length and the middle of fin height and width. For this case, the variation is 19.47% with respect to the nominal current. For <inline-formula> <tex-math notation="LaTeX">{V}_{\text {DS}} = {0.5} </tex-math></inline-formula> V and <inline-formula> <tex-math notation="LaTeX">{V}_{\text {DS}} = {0.7} </tex-math></inline-formula> V, the maximum current variation was observed when the dopant is closer to the source region, and the current variation is, respectively, 20.60% and 21.48%.]]></abstract><pub>IEEE</pub><doi>10.1109/TED.2024.3440276</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4990-5113</orcidid><orcidid>https://orcid.org/0000-0003-2099-9336</orcidid><orcidid>https://orcid.org/0000-0003-4769-5535</orcidid><orcidid>https://orcid.org/0000-0003-1361-3650</orcidid><orcidid>https://orcid.org/0000-0001-5749-2403</orcidid><orcidid>https://orcid.org/0000-0003-1215-3197</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2024-10, Vol.71 (10), p.5838-5844
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_10681215
source IEEE Electronic Library (IEL)
subjects Electric potential
Electrons
Field effect transistors
Mathematical models
Quantum-corrected Monte Carlo (MC) simulation
random dopant
Resource description framework
Semiconductor process modeling
silicon on insulator (SOI) nanowire
Silicon-on-insulator
transistor variability
title Study of the Impact of RDF on n-Type SOI Nanowire FET via Quantum-Corrected Monte Carlo Device Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A09%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20the%20Impact%20of%20RDF%20on%20n-Type%20SOI%20Nanowire%20FET%20via%20Quantum-Corrected%20Monte%20Carlo%20Device%20Simulations&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Soares,%20Caroline%20S.&rft.date=2024-10&rft.volume=71&rft.issue=10&rft.spage=5838&rft.epage=5844&rft.pages=5838-5844&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2024.3440276&rft_dat=%3Ccrossref_RIE%3E10_1109_TED_2024_3440276%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10681215&rfr_iscdi=true