Faster ISNet for Background Bias Mitigation on Deep Neural Networks
Bias or spurious correlations in image backgrounds can impact neural networks, causing shortcut learning (Clever Hans Effect) and hampering generalization to real-world data. ISNet, a recently introduced architecture, proposed the optimization of Layer-Wise Relevance Propagation (LRP, an explanation...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.155151-155167 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 155167 |
---|---|
container_issue | |
container_start_page | 155151 |
container_title | IEEE access |
container_volume | 12 |
creator | Bassi, Pedro R. A. S. Decherchi, Sergio Cavalli, Andrea |
description | Bias or spurious correlations in image backgrounds can impact neural networks, causing shortcut learning (Clever Hans Effect) and hampering generalization to real-world data. ISNet, a recently introduced architecture, proposed the optimization of Layer-Wise Relevance Propagation (LRP, an explanation technique) heatmaps, to mitigate the influence of backgrounds on deep classifiers. However, ISNet's training time scales linearly with the number of classes in an application. Here, we propose reformulated architectures, dubbed Faster ISNets, whose training time becomes independent from this number. Additionally, we introduce a concise and model-agnostic LRP implementation, LRP-Flex, which can readily explain arbitrary DNN architectures, or convert them into Faster ISNets. We challenge the proposed architectures using synthetic background bias, and COVID-19 detection in chest X-rays, an application that commonly presents background bias. The networks hindered background attention and shortcut learning, surpassing multiple state-of-the-art models on out-of-distribution test datasets. Representing a potentially massive training speed improvement over ISNet, the proposed architectures introduce LRP optimization into a gamut of applications that the original ISNet model cannot feasibly handle. Code for the Faster ISNet and LRP-Flex is available at https://github.com/PedroRASB/FasterISNet . |
doi_str_mv | 10.1109/ACCESS.2024.3461773 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10681068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10681068</ieee_id><doaj_id>oai_doaj_org_article_6b2a9d1fe0b54cdd8da90a030cecffdc</doaj_id><sourcerecordid>3122296463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2401-f79803d516f1914c29cc7ea043f6f10617e0f74214609266197045c991b11aed3</originalsourceid><addsrcrecordid>eNpNUMFOAjEQ3RhNJMgX6GETz2Cn7XbpEVZQEsQDem5KOyULSLFdYvx7i0uMk5nM5GXem8nLslsgAwAiH0ZVNVkuB5RQPmBcQFmyi6xDQcg-K5i4_DdfZ70YNyTFMEFF2cmqqY4Nhny2XGCTOx_ysTbbdfDHvc3HtY75S93Ua93Ufp-nfEQ85As8Br1LrfnyYRtvsiundxF7597N3qeTt-q5P399mlWjed9QTqDvSjkkzBYgHEjghkpjStSEM5cQkh5H4kpOgQsiqRAgS8ILIyWsADRa1s1mra71eqMOof7Q4Vt5XatfwIe10qGpzQ6VWFEtLTgkq4Iba4dWS6IJIwaNc9YkrftW6xD85xFjozb-GPbpfcWAUioFFyxtsXbLBB9jQPd3FYg6ma9a89XJfHU2P7HuWlaNiP8YYngq9gMmCX4J</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122296463</pqid></control><display><type>article</type><title>Faster ISNet for Background Bias Mitigation on Deep Neural Networks</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bassi, Pedro R. A. S. ; Decherchi, Sergio ; Cavalli, Andrea</creator><creatorcontrib>Bassi, Pedro R. A. S. ; Decherchi, Sergio ; Cavalli, Andrea</creatorcontrib><description>Bias or spurious correlations in image backgrounds can impact neural networks, causing shortcut learning (Clever Hans Effect) and hampering generalization to real-world data. ISNet, a recently introduced architecture, proposed the optimization of Layer-Wise Relevance Propagation (LRP, an explanation technique) heatmaps, to mitigate the influence of backgrounds on deep classifiers. However, ISNet's training time scales linearly with the number of classes in an application. Here, we propose reformulated architectures, dubbed Faster ISNets, whose training time becomes independent from this number. Additionally, we introduce a concise and model-agnostic LRP implementation, LRP-Flex, which can readily explain arbitrary DNN architectures, or convert them into Faster ISNets. We challenge the proposed architectures using synthetic background bias, and COVID-19 detection in chest X-rays, an application that commonly presents background bias. The networks hindered background attention and shortcut learning, surpassing multiple state-of-the-art models on out-of-distribution test datasets. Representing a potentially massive training speed improvement over ISNet, the proposed architectures introduce LRP optimization into a gamut of applications that the original ISNet model cannot feasibly handle. Code for the Faster ISNet and LRP-Flex is available at https://github.com/PedroRASB/FasterISNet .</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3461773</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; background bias ; Bias ; Computer architecture ; COVID-19 ; COVID-19 detection ; Explainable AI ; explainable artificial intelligence ; Heating systems ; Image segmentation ; ISNet ; layer-wise relevance propagation ; Machine learning ; Neural networks ; Optimization ; Optimization methods ; Shortcut learning ; Training</subject><ispartof>IEEE access, 2024, Vol.12, p.155151-155167</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2401-f79803d516f1914c29cc7ea043f6f10617e0f74214609266197045c991b11aed3</cites><orcidid>0000-0002-8995-9423 ; 0000-0001-8371-2270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10681068$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,866,2106,4028,27642,27932,27933,27934,54942</link.rule.ids></links><search><creatorcontrib>Bassi, Pedro R. A. S.</creatorcontrib><creatorcontrib>Decherchi, Sergio</creatorcontrib><creatorcontrib>Cavalli, Andrea</creatorcontrib><title>Faster ISNet for Background Bias Mitigation on Deep Neural Networks</title><title>IEEE access</title><addtitle>Access</addtitle><description>Bias or spurious correlations in image backgrounds can impact neural networks, causing shortcut learning (Clever Hans Effect) and hampering generalization to real-world data. ISNet, a recently introduced architecture, proposed the optimization of Layer-Wise Relevance Propagation (LRP, an explanation technique) heatmaps, to mitigate the influence of backgrounds on deep classifiers. However, ISNet's training time scales linearly with the number of classes in an application. Here, we propose reformulated architectures, dubbed Faster ISNets, whose training time becomes independent from this number. Additionally, we introduce a concise and model-agnostic LRP implementation, LRP-Flex, which can readily explain arbitrary DNN architectures, or convert them into Faster ISNets. We challenge the proposed architectures using synthetic background bias, and COVID-19 detection in chest X-rays, an application that commonly presents background bias. The networks hindered background attention and shortcut learning, surpassing multiple state-of-the-art models on out-of-distribution test datasets. Representing a potentially massive training speed improvement over ISNet, the proposed architectures introduce LRP optimization into a gamut of applications that the original ISNet model cannot feasibly handle. Code for the Faster ISNet and LRP-Flex is available at https://github.com/PedroRASB/FasterISNet .</description><subject>Artificial neural networks</subject><subject>background bias</subject><subject>Bias</subject><subject>Computer architecture</subject><subject>COVID-19</subject><subject>COVID-19 detection</subject><subject>Explainable AI</subject><subject>explainable artificial intelligence</subject><subject>Heating systems</subject><subject>Image segmentation</subject><subject>ISNet</subject><subject>layer-wise relevance propagation</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Optimization methods</subject><subject>Shortcut learning</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMFOAjEQ3RhNJMgX6GETz2Cn7XbpEVZQEsQDem5KOyULSLFdYvx7i0uMk5nM5GXem8nLslsgAwAiH0ZVNVkuB5RQPmBcQFmyi6xDQcg-K5i4_DdfZ70YNyTFMEFF2cmqqY4Nhny2XGCTOx_ysTbbdfDHvc3HtY75S93Ua93Ufp-nfEQ85As8Br1LrfnyYRtvsiundxF7597N3qeTt-q5P399mlWjed9QTqDvSjkkzBYgHEjghkpjStSEM5cQkh5H4kpOgQsiqRAgS8ILIyWsADRa1s1mra71eqMOof7Q4Vt5XatfwIe10qGpzQ6VWFEtLTgkq4Iba4dWS6IJIwaNc9YkrftW6xD85xFjozb-GPbpfcWAUioFFyxtsXbLBB9jQPd3FYg6ma9a89XJfHU2P7HuWlaNiP8YYngq9gMmCX4J</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Bassi, Pedro R. A. S.</creator><creator>Decherchi, Sergio</creator><creator>Cavalli, Andrea</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8995-9423</orcidid><orcidid>https://orcid.org/0000-0001-8371-2270</orcidid></search><sort><creationdate>2024</creationdate><title>Faster ISNet for Background Bias Mitigation on Deep Neural Networks</title><author>Bassi, Pedro R. A. S. ; Decherchi, Sergio ; Cavalli, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2401-f79803d516f1914c29cc7ea043f6f10617e0f74214609266197045c991b11aed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>background bias</topic><topic>Bias</topic><topic>Computer architecture</topic><topic>COVID-19</topic><topic>COVID-19 detection</topic><topic>Explainable AI</topic><topic>explainable artificial intelligence</topic><topic>Heating systems</topic><topic>Image segmentation</topic><topic>ISNet</topic><topic>layer-wise relevance propagation</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Optimization methods</topic><topic>Shortcut learning</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bassi, Pedro R. A. S.</creatorcontrib><creatorcontrib>Decherchi, Sergio</creatorcontrib><creatorcontrib>Cavalli, Andrea</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bassi, Pedro R. A. S.</au><au>Decherchi, Sergio</au><au>Cavalli, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Faster ISNet for Background Bias Mitigation on Deep Neural Networks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>155151</spage><epage>155167</epage><pages>155151-155167</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Bias or spurious correlations in image backgrounds can impact neural networks, causing shortcut learning (Clever Hans Effect) and hampering generalization to real-world data. ISNet, a recently introduced architecture, proposed the optimization of Layer-Wise Relevance Propagation (LRP, an explanation technique) heatmaps, to mitigate the influence of backgrounds on deep classifiers. However, ISNet's training time scales linearly with the number of classes in an application. Here, we propose reformulated architectures, dubbed Faster ISNets, whose training time becomes independent from this number. Additionally, we introduce a concise and model-agnostic LRP implementation, LRP-Flex, which can readily explain arbitrary DNN architectures, or convert them into Faster ISNets. We challenge the proposed architectures using synthetic background bias, and COVID-19 detection in chest X-rays, an application that commonly presents background bias. The networks hindered background attention and shortcut learning, surpassing multiple state-of-the-art models on out-of-distribution test datasets. Representing a potentially massive training speed improvement over ISNet, the proposed architectures introduce LRP optimization into a gamut of applications that the original ISNet model cannot feasibly handle. Code for the Faster ISNet and LRP-Flex is available at https://github.com/PedroRASB/FasterISNet .</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3461773</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8995-9423</orcidid><orcidid>https://orcid.org/0000-0001-8371-2270</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.155151-155167 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10681068 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Artificial neural networks background bias Bias Computer architecture COVID-19 COVID-19 detection Explainable AI explainable artificial intelligence Heating systems Image segmentation ISNet layer-wise relevance propagation Machine learning Neural networks Optimization Optimization methods Shortcut learning Training |
title | Faster ISNet for Background Bias Mitigation on Deep Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T11%3A08%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Faster%20ISNet%20for%20Background%20Bias%20Mitigation%20on%20Deep%20Neural%20Networks&rft.jtitle=IEEE%20access&rft.au=Bassi,%20Pedro%20R.%20A.%20S.&rft.date=2024&rft.volume=12&rft.spage=155151&rft.epage=155167&rft.pages=155151-155167&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3461773&rft_dat=%3Cproquest_ieee_%3E3122296463%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3122296463&rft_id=info:pmid/&rft_ieee_id=10681068&rft_doaj_id=oai_doaj_org_article_6b2a9d1fe0b54cdd8da90a030cecffdc&rfr_iscdi=true |