Faster ISNet for Background Bias Mitigation on Deep Neural Networks

Bias or spurious correlations in image backgrounds can impact neural networks, causing shortcut learning (Clever Hans Effect) and hampering generalization to real-world data. ISNet, a recently introduced architecture, proposed the optimization of Layer-Wise Relevance Propagation (LRP, an explanation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.155151-155167
Hauptverfasser: Bassi, Pedro R. A. S., Decherchi, Sergio, Cavalli, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155167
container_issue
container_start_page 155151
container_title IEEE access
container_volume 12
creator Bassi, Pedro R. A. S.
Decherchi, Sergio
Cavalli, Andrea
description Bias or spurious correlations in image backgrounds can impact neural networks, causing shortcut learning (Clever Hans Effect) and hampering generalization to real-world data. ISNet, a recently introduced architecture, proposed the optimization of Layer-Wise Relevance Propagation (LRP, an explanation technique) heatmaps, to mitigate the influence of backgrounds on deep classifiers. However, ISNet's training time scales linearly with the number of classes in an application. Here, we propose reformulated architectures, dubbed Faster ISNets, whose training time becomes independent from this number. Additionally, we introduce a concise and model-agnostic LRP implementation, LRP-Flex, which can readily explain arbitrary DNN architectures, or convert them into Faster ISNets. We challenge the proposed architectures using synthetic background bias, and COVID-19 detection in chest X-rays, an application that commonly presents background bias. The networks hindered background attention and shortcut learning, surpassing multiple state-of-the-art models on out-of-distribution test datasets. Representing a potentially massive training speed improvement over ISNet, the proposed architectures introduce LRP optimization into a gamut of applications that the original ISNet model cannot feasibly handle. Code for the Faster ISNet and LRP-Flex is available at https://github.com/PedroRASB/FasterISNet .
doi_str_mv 10.1109/ACCESS.2024.3461773
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10681068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10681068</ieee_id><doaj_id>oai_doaj_org_article_6b2a9d1fe0b54cdd8da90a030cecffdc</doaj_id><sourcerecordid>3122296463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2401-f79803d516f1914c29cc7ea043f6f10617e0f74214609266197045c991b11aed3</originalsourceid><addsrcrecordid>eNpNUMFOAjEQ3RhNJMgX6GETz2Cn7XbpEVZQEsQDem5KOyULSLFdYvx7i0uMk5nM5GXem8nLslsgAwAiH0ZVNVkuB5RQPmBcQFmyi6xDQcg-K5i4_DdfZ70YNyTFMEFF2cmqqY4Nhny2XGCTOx_ysTbbdfDHvc3HtY75S93Ua93Ufp-nfEQ85As8Br1LrfnyYRtvsiundxF7597N3qeTt-q5P399mlWjed9QTqDvSjkkzBYgHEjghkpjStSEM5cQkh5H4kpOgQsiqRAgS8ILIyWsADRa1s1mra71eqMOof7Q4Vt5XatfwIe10qGpzQ6VWFEtLTgkq4Iba4dWS6IJIwaNc9YkrftW6xD85xFjozb-GPbpfcWAUioFFyxtsXbLBB9jQPd3FYg6ma9a89XJfHU2P7HuWlaNiP8YYngq9gMmCX4J</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122296463</pqid></control><display><type>article</type><title>Faster ISNet for Background Bias Mitigation on Deep Neural Networks</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bassi, Pedro R. A. S. ; Decherchi, Sergio ; Cavalli, Andrea</creator><creatorcontrib>Bassi, Pedro R. A. S. ; Decherchi, Sergio ; Cavalli, Andrea</creatorcontrib><description>Bias or spurious correlations in image backgrounds can impact neural networks, causing shortcut learning (Clever Hans Effect) and hampering generalization to real-world data. ISNet, a recently introduced architecture, proposed the optimization of Layer-Wise Relevance Propagation (LRP, an explanation technique) heatmaps, to mitigate the influence of backgrounds on deep classifiers. However, ISNet's training time scales linearly with the number of classes in an application. Here, we propose reformulated architectures, dubbed Faster ISNets, whose training time becomes independent from this number. Additionally, we introduce a concise and model-agnostic LRP implementation, LRP-Flex, which can readily explain arbitrary DNN architectures, or convert them into Faster ISNets. We challenge the proposed architectures using synthetic background bias, and COVID-19 detection in chest X-rays, an application that commonly presents background bias. The networks hindered background attention and shortcut learning, surpassing multiple state-of-the-art models on out-of-distribution test datasets. Representing a potentially massive training speed improvement over ISNet, the proposed architectures introduce LRP optimization into a gamut of applications that the original ISNet model cannot feasibly handle. Code for the Faster ISNet and LRP-Flex is available at https://github.com/PedroRASB/FasterISNet .</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3461773</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; background bias ; Bias ; Computer architecture ; COVID-19 ; COVID-19 detection ; Explainable AI ; explainable artificial intelligence ; Heating systems ; Image segmentation ; ISNet ; layer-wise relevance propagation ; Machine learning ; Neural networks ; Optimization ; Optimization methods ; Shortcut learning ; Training</subject><ispartof>IEEE access, 2024, Vol.12, p.155151-155167</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2401-f79803d516f1914c29cc7ea043f6f10617e0f74214609266197045c991b11aed3</cites><orcidid>0000-0002-8995-9423 ; 0000-0001-8371-2270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10681068$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,866,2106,4028,27642,27932,27933,27934,54942</link.rule.ids></links><search><creatorcontrib>Bassi, Pedro R. A. S.</creatorcontrib><creatorcontrib>Decherchi, Sergio</creatorcontrib><creatorcontrib>Cavalli, Andrea</creatorcontrib><title>Faster ISNet for Background Bias Mitigation on Deep Neural Networks</title><title>IEEE access</title><addtitle>Access</addtitle><description>Bias or spurious correlations in image backgrounds can impact neural networks, causing shortcut learning (Clever Hans Effect) and hampering generalization to real-world data. ISNet, a recently introduced architecture, proposed the optimization of Layer-Wise Relevance Propagation (LRP, an explanation technique) heatmaps, to mitigate the influence of backgrounds on deep classifiers. However, ISNet's training time scales linearly with the number of classes in an application. Here, we propose reformulated architectures, dubbed Faster ISNets, whose training time becomes independent from this number. Additionally, we introduce a concise and model-agnostic LRP implementation, LRP-Flex, which can readily explain arbitrary DNN architectures, or convert them into Faster ISNets. We challenge the proposed architectures using synthetic background bias, and COVID-19 detection in chest X-rays, an application that commonly presents background bias. The networks hindered background attention and shortcut learning, surpassing multiple state-of-the-art models on out-of-distribution test datasets. Representing a potentially massive training speed improvement over ISNet, the proposed architectures introduce LRP optimization into a gamut of applications that the original ISNet model cannot feasibly handle. Code for the Faster ISNet and LRP-Flex is available at https://github.com/PedroRASB/FasterISNet .</description><subject>Artificial neural networks</subject><subject>background bias</subject><subject>Bias</subject><subject>Computer architecture</subject><subject>COVID-19</subject><subject>COVID-19 detection</subject><subject>Explainable AI</subject><subject>explainable artificial intelligence</subject><subject>Heating systems</subject><subject>Image segmentation</subject><subject>ISNet</subject><subject>layer-wise relevance propagation</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Optimization methods</subject><subject>Shortcut learning</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMFOAjEQ3RhNJMgX6GETz2Cn7XbpEVZQEsQDem5KOyULSLFdYvx7i0uMk5nM5GXem8nLslsgAwAiH0ZVNVkuB5RQPmBcQFmyi6xDQcg-K5i4_DdfZ70YNyTFMEFF2cmqqY4Nhny2XGCTOx_ysTbbdfDHvc3HtY75S93Ua93Ufp-nfEQ85As8Br1LrfnyYRtvsiundxF7597N3qeTt-q5P399mlWjed9QTqDvSjkkzBYgHEjghkpjStSEM5cQkh5H4kpOgQsiqRAgS8ILIyWsADRa1s1mra71eqMOof7Q4Vt5XatfwIe10qGpzQ6VWFEtLTgkq4Iba4dWS6IJIwaNc9YkrftW6xD85xFjozb-GPbpfcWAUioFFyxtsXbLBB9jQPd3FYg6ma9a89XJfHU2P7HuWlaNiP8YYngq9gMmCX4J</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Bassi, Pedro R. A. S.</creator><creator>Decherchi, Sergio</creator><creator>Cavalli, Andrea</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8995-9423</orcidid><orcidid>https://orcid.org/0000-0001-8371-2270</orcidid></search><sort><creationdate>2024</creationdate><title>Faster ISNet for Background Bias Mitigation on Deep Neural Networks</title><author>Bassi, Pedro R. A. S. ; Decherchi, Sergio ; Cavalli, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2401-f79803d516f1914c29cc7ea043f6f10617e0f74214609266197045c991b11aed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>background bias</topic><topic>Bias</topic><topic>Computer architecture</topic><topic>COVID-19</topic><topic>COVID-19 detection</topic><topic>Explainable AI</topic><topic>explainable artificial intelligence</topic><topic>Heating systems</topic><topic>Image segmentation</topic><topic>ISNet</topic><topic>layer-wise relevance propagation</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Optimization methods</topic><topic>Shortcut learning</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bassi, Pedro R. A. S.</creatorcontrib><creatorcontrib>Decherchi, Sergio</creatorcontrib><creatorcontrib>Cavalli, Andrea</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bassi, Pedro R. A. S.</au><au>Decherchi, Sergio</au><au>Cavalli, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Faster ISNet for Background Bias Mitigation on Deep Neural Networks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>155151</spage><epage>155167</epage><pages>155151-155167</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Bias or spurious correlations in image backgrounds can impact neural networks, causing shortcut learning (Clever Hans Effect) and hampering generalization to real-world data. ISNet, a recently introduced architecture, proposed the optimization of Layer-Wise Relevance Propagation (LRP, an explanation technique) heatmaps, to mitigate the influence of backgrounds on deep classifiers. However, ISNet's training time scales linearly with the number of classes in an application. Here, we propose reformulated architectures, dubbed Faster ISNets, whose training time becomes independent from this number. Additionally, we introduce a concise and model-agnostic LRP implementation, LRP-Flex, which can readily explain arbitrary DNN architectures, or convert them into Faster ISNets. We challenge the proposed architectures using synthetic background bias, and COVID-19 detection in chest X-rays, an application that commonly presents background bias. The networks hindered background attention and shortcut learning, surpassing multiple state-of-the-art models on out-of-distribution test datasets. Representing a potentially massive training speed improvement over ISNet, the proposed architectures introduce LRP optimization into a gamut of applications that the original ISNet model cannot feasibly handle. Code for the Faster ISNet and LRP-Flex is available at https://github.com/PedroRASB/FasterISNet .</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3461773</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8995-9423</orcidid><orcidid>https://orcid.org/0000-0001-8371-2270</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.155151-155167
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10681068
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Artificial neural networks
background bias
Bias
Computer architecture
COVID-19
COVID-19 detection
Explainable AI
explainable artificial intelligence
Heating systems
Image segmentation
ISNet
layer-wise relevance propagation
Machine learning
Neural networks
Optimization
Optimization methods
Shortcut learning
Training
title Faster ISNet for Background Bias Mitigation on Deep Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T11%3A08%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Faster%20ISNet%20for%20Background%20Bias%20Mitigation%20on%20Deep%20Neural%20Networks&rft.jtitle=IEEE%20access&rft.au=Bassi,%20Pedro%20R.%20A.%20S.&rft.date=2024&rft.volume=12&rft.spage=155151&rft.epage=155167&rft.pages=155151-155167&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3461773&rft_dat=%3Cproquest_ieee_%3E3122296463%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3122296463&rft_id=info:pmid/&rft_ieee_id=10681068&rft_doaj_id=oai_doaj_org_article_6b2a9d1fe0b54cdd8da90a030cecffdc&rfr_iscdi=true