CataAnno: An Ancient Catalog Annotator for Annotation Cleaning by Recommendation
Classical bibliography, by researching preserved catalogs from both official archives and personal collections of accumulated books, examines the books throughout history, thereby revealing cultural development across historical periods. In this work, we collaborate with domain experts to accomplish...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2025-01, Vol.31 (1), p.404-414 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 414 |
---|---|
container_issue | 1 |
container_start_page | 404 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 31 |
creator | Shao, Hanning Yuan, Xiaoru |
description | Classical bibliography, by researching preserved catalogs from both official archives and personal collections of accumulated books, examines the books throughout history, thereby revealing cultural development across historical periods. In this work, we collaborate with domain experts to accomplish the task of data annotation concerning Chinese ancient catalogs. We introduce the CataAnno system that facilitates users in completing annotations more efficiently through cross-linked views, recommendation methods and convenient annotation interactions. The recommendation method can learn the background knowledge and annotation patterns that experts subconsciously integrate into the data during prior annotation processes. CataAnno searches for the most relevant examples previously annotated and recommends to the user. Meanwhile, the cross-linked views assist users in comprehending the correlations between entries and offer explanations for these recommendations. Evaluation and expert feedback confirm that the CataAnno system, by offering high-quality recommendations and visualizing the relationships between entries, can mitigate the necessity for specialized knowledge during the annotation process. This results in enhanced accuracy and consistency in annotations, thereby enhancing the overall efficiency. |
doi_str_mv | 10.1109/TVCG.2024.3456379 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10681004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10681004</ieee_id><sourcerecordid>3106043613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1194-29a39c91ff3737d6ecd94fed865cd5961bc29da35710eeeb5f63faebe4e096673</originalsourceid><addsrcrecordid>eNpNkFFLwzAQx4Mobk4_gCDSR186kyZNG99GmVMYKDJ9DWl6GZU2mU33sG9v6qoICbnL_e5_xx-ha4LnhGBxv_koVvMEJ2xOWcppJk7QlAhGYpxifhpinGVxwhM-QRfef2JMGMvFOZpQkeQBZ1P0WqheLax1D9HChqNrsH00fDZuGw2FXvWui0y4Y1Y7GxUNKFvbbVQeojfQrm3BVj-lS3RmVOPhanxn6P1xuSme4vXL6rlYrGNNwopxIhQVWhBjaEazioOuBDNQ5TzVVSo4KXUiKkXTjGAAKFPDqVFQAgMsOM_oDN0ddXed-9qD72Vbew1Noyy4vZeUYI4Z5YQGlBxR3TnvOzBy19Wt6g6SYDkYKQcj5WCkHI0MPbej_L5sofrr-HUuADdHoA7r_RPkOcFh7jcIlHdV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106043613</pqid></control><display><type>article</type><title>CataAnno: An Ancient Catalog Annotator for Annotation Cleaning by Recommendation</title><source>IEEE Electronic Library (IEL)</source><creator>Shao, Hanning ; Yuan, Xiaoru</creator><creatorcontrib>Shao, Hanning ; Yuan, Xiaoru</creatorcontrib><description>Classical bibliography, by researching preserved catalogs from both official archives and personal collections of accumulated books, examines the books throughout history, thereby revealing cultural development across historical periods. In this work, we collaborate with domain experts to accomplish the task of data annotation concerning Chinese ancient catalogs. We introduce the CataAnno system that facilitates users in completing annotations more efficiently through cross-linked views, recommendation methods and convenient annotation interactions. The recommendation method can learn the background knowledge and annotation patterns that experts subconsciously integrate into the data during prior annotation processes. CataAnno searches for the most relevant examples previously annotated and recommends to the user. Meanwhile, the cross-linked views assist users in comprehending the correlations between entries and offer explanations for these recommendations. Evaluation and expert feedback confirm that the CataAnno system, by offering high-quality recommendations and visualizing the relationships between entries, can mitigate the necessity for specialized knowledge during the annotation process. This results in enhanced accuracy and consistency in annotations, thereby enhancing the overall efficiency.</description><identifier>ISSN: 1077-2626</identifier><identifier>ISSN: 1941-0506</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2024.3456379</identifier><identifier>PMID: 39283794</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Annotations ; Bibliographies ; Data mining ; Data models ; Data visualization ; Digital humanities ; History ; machine learning ; Prototypes ; text annotation tool ; text visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2025-01, Vol.31 (1), p.404-414</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1194-29a39c91ff3737d6ecd94fed865cd5961bc29da35710eeeb5f63faebe4e096673</cites><orcidid>0000-0002-7233-980X ; 0009-0003-8484-5798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10681004$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10681004$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39283794$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shao, Hanning</creatorcontrib><creatorcontrib>Yuan, Xiaoru</creatorcontrib><title>CataAnno: An Ancient Catalog Annotator for Annotation Cleaning by Recommendation</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Classical bibliography, by researching preserved catalogs from both official archives and personal collections of accumulated books, examines the books throughout history, thereby revealing cultural development across historical periods. In this work, we collaborate with domain experts to accomplish the task of data annotation concerning Chinese ancient catalogs. We introduce the CataAnno system that facilitates users in completing annotations more efficiently through cross-linked views, recommendation methods and convenient annotation interactions. The recommendation method can learn the background knowledge and annotation patterns that experts subconsciously integrate into the data during prior annotation processes. CataAnno searches for the most relevant examples previously annotated and recommends to the user. Meanwhile, the cross-linked views assist users in comprehending the correlations between entries and offer explanations for these recommendations. Evaluation and expert feedback confirm that the CataAnno system, by offering high-quality recommendations and visualizing the relationships between entries, can mitigate the necessity for specialized knowledge during the annotation process. This results in enhanced accuracy and consistency in annotations, thereby enhancing the overall efficiency.</description><subject>Annotations</subject><subject>Bibliographies</subject><subject>Data mining</subject><subject>Data models</subject><subject>Data visualization</subject><subject>Digital humanities</subject><subject>History</subject><subject>machine learning</subject><subject>Prototypes</subject><subject>text annotation tool</subject><subject>text visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFFLwzAQx4Mobk4_gCDSR186kyZNG99GmVMYKDJ9DWl6GZU2mU33sG9v6qoICbnL_e5_xx-ha4LnhGBxv_koVvMEJ2xOWcppJk7QlAhGYpxifhpinGVxwhM-QRfef2JMGMvFOZpQkeQBZ1P0WqheLax1D9HChqNrsH00fDZuGw2FXvWui0y4Y1Y7GxUNKFvbbVQeojfQrm3BVj-lS3RmVOPhanxn6P1xuSme4vXL6rlYrGNNwopxIhQVWhBjaEazioOuBDNQ5TzVVSo4KXUiKkXTjGAAKFPDqVFQAgMsOM_oDN0ddXed-9qD72Vbew1Noyy4vZeUYI4Z5YQGlBxR3TnvOzBy19Wt6g6SYDkYKQcj5WCkHI0MPbej_L5sofrr-HUuADdHoA7r_RPkOcFh7jcIlHdV</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Shao, Hanning</creator><creator>Yuan, Xiaoru</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7233-980X</orcidid><orcidid>https://orcid.org/0009-0003-8484-5798</orcidid></search><sort><creationdate>202501</creationdate><title>CataAnno: An Ancient Catalog Annotator for Annotation Cleaning by Recommendation</title><author>Shao, Hanning ; Yuan, Xiaoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1194-29a39c91ff3737d6ecd94fed865cd5961bc29da35710eeeb5f63faebe4e096673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Annotations</topic><topic>Bibliographies</topic><topic>Data mining</topic><topic>Data models</topic><topic>Data visualization</topic><topic>Digital humanities</topic><topic>History</topic><topic>machine learning</topic><topic>Prototypes</topic><topic>text annotation tool</topic><topic>text visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Hanning</creatorcontrib><creatorcontrib>Yuan, Xiaoru</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shao, Hanning</au><au>Yuan, Xiaoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CataAnno: An Ancient Catalog Annotator for Annotation Cleaning by Recommendation</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2025-01</date><risdate>2025</risdate><volume>31</volume><issue>1</issue><spage>404</spage><epage>414</epage><pages>404-414</pages><issn>1077-2626</issn><issn>1941-0506</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Classical bibliography, by researching preserved catalogs from both official archives and personal collections of accumulated books, examines the books throughout history, thereby revealing cultural development across historical periods. In this work, we collaborate with domain experts to accomplish the task of data annotation concerning Chinese ancient catalogs. We introduce the CataAnno system that facilitates users in completing annotations more efficiently through cross-linked views, recommendation methods and convenient annotation interactions. The recommendation method can learn the background knowledge and annotation patterns that experts subconsciously integrate into the data during prior annotation processes. CataAnno searches for the most relevant examples previously annotated and recommends to the user. Meanwhile, the cross-linked views assist users in comprehending the correlations between entries and offer explanations for these recommendations. Evaluation and expert feedback confirm that the CataAnno system, by offering high-quality recommendations and visualizing the relationships between entries, can mitigate the necessity for specialized knowledge during the annotation process. This results in enhanced accuracy and consistency in annotations, thereby enhancing the overall efficiency.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39283794</pmid><doi>10.1109/TVCG.2024.3456379</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7233-980X</orcidid><orcidid>https://orcid.org/0009-0003-8484-5798</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2025-01, Vol.31 (1), p.404-414 |
issn | 1077-2626 1941-0506 1941-0506 |
language | eng |
recordid | cdi_ieee_primary_10681004 |
source | IEEE Electronic Library (IEL) |
subjects | Annotations Bibliographies Data mining Data models Data visualization Digital humanities History machine learning Prototypes text annotation tool text visualization |
title | CataAnno: An Ancient Catalog Annotator for Annotation Cleaning by Recommendation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A39%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CataAnno:%20An%20Ancient%20Catalog%20Annotator%20for%20Annotation%20Cleaning%20by%20Recommendation&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Shao,%20Hanning&rft.date=2025-01&rft.volume=31&rft.issue=1&rft.spage=404&rft.epage=414&rft.pages=404-414&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2024.3456379&rft_dat=%3Cproquest_RIE%3E3106043613%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106043613&rft_id=info:pmid/39283794&rft_ieee_id=10681004&rfr_iscdi=true |