Cortical ROI Importance Improves MI Decoding From EEG Using Fused Light Neural Network

Decoding motor imagery (MI) using deep learning in cortical level has potential in brain computer interface based intelligent rehabilitation. However, a mass of dipoles is inconvenient to extract the personalized features and requires a more complex neural network. In consideration of the structural...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural systems and rehabilitation engineering 2024, Vol.32, p.3636-3646
Hauptverfasser: Wang, Linlin, Li, Mingai, Xu, Dongqin, Yang, Yufei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3646
container_issue
container_start_page 3636
container_title IEEE transactions on neural systems and rehabilitation engineering
container_volume 32
creator Wang, Linlin
Li, Mingai
Xu, Dongqin
Yang, Yufei
description Decoding motor imagery (MI) using deep learning in cortical level has potential in brain computer interface based intelligent rehabilitation. However, a mass of dipoles is inconvenient to extract the personalized features and requires a more complex neural network. In consideration of the structural and functional similarity of the neurons in a neuroanatomical region, i.e., a region of interest (ROI), we propose that the comprehensive performance of each ROI may be reflected by a specific representative dipole (RD), and the time-frequency spectrums of all RDs are applied simultaneously to Random Forest algorithm to give a quantitative metric of each ROI importance (RI). Then, the more divided sub-band spectral powers are reinforced by RI, and they are interpolated to a 2-dimensional (2D) plane transformed from 3D space of all RDs, yielding an ensemble representation of RD feature image sequences (ERDFIS). Furthermore, a lightweight network, including 2D separable convolution and gated recurrent unit (2DSCG), is developed to extract and classify the frequency-spatial and temporal features from ERDFIS, forming a novel MI decoding method in cortical level (called ERDFIS-2DSCG). Based on two public datasets, the decoding accuracies of ten-fold cross-validation are 89.89% and 94.35%, respectively. The results suggest that RD can embody the overall property of ROI in time-frequency-space domains, and ROI importance is helpful to highlight the subject-based characteristics of MI-EEG. Meanwhile, 2DSCG is matched well with ERDFIS, jointly improving the decoding performance.
doi_str_mv 10.1109/TNSRE.2024.3461339
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10680573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10680573</ieee_id><doaj_id>oai_doaj_org_article_818c5d1f7c3f48b09e3d30b1fb9e4936</doaj_id><sourcerecordid>3106043948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-86f13e17031ebb5a3712e7aea8d2ad2c2ef9478df5a8bba6e27ea6d4c776c31b3</originalsourceid><addsrcrecordid>eNpNkU1v1DAQhiNERUvhDyCEfOSSre1xYueIlm2JtGylfnC1_DFZUpJ1aycg_j3J7lL15BnrnWc0erLsA6MLxmh1cbe5vVktOOViAaJkANWr7IwVhcopZ_T1XIPIBXB6mr1N6YFSJstCvslOoeIKFOVn2Y9liEPrTEdurmtS949Ta3YO5zKG35jI95p8RRd8u9uSyxh6slpdkfu0b8eEnqzb7c-BbHCME2WDw58Qf73LThrTJXx_fM-z-8vV3fJbvr6-qpdf1rkDVgy5KhsGyCQFhtYWBiTjKA0a5bnx3HFsKiGVbwqjrDUlcomm9MJJWU4EC-dZfeD6YB70Y2x7E__qYFq9_whxq818X4daMeUKzxrpoBHK0grBA7WssRWKCsqJ9fnAmg5_GjENum-Tw64zOwxj0sBoSQVUQk1Rfoi6GFKK2DyvZlTPbvTejZ7d6KObaejTkT_aHv3zyH8ZU-DjIdAi4gtiqWghAf4BTy2SCg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106043948</pqid></control><display><type>article</type><title>Cortical ROI Importance Improves MI Decoding From EEG Using Fused Light Neural Network</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wang, Linlin ; Li, Mingai ; Xu, Dongqin ; Yang, Yufei</creator><creatorcontrib>Wang, Linlin ; Li, Mingai ; Xu, Dongqin ; Yang, Yufei</creatorcontrib><description>Decoding motor imagery (MI) using deep learning in cortical level has potential in brain computer interface based intelligent rehabilitation. However, a mass of dipoles is inconvenient to extract the personalized features and requires a more complex neural network. In consideration of the structural and functional similarity of the neurons in a neuroanatomical region, i.e., a region of interest (ROI), we propose that the comprehensive performance of each ROI may be reflected by a specific representative dipole (RD), and the time-frequency spectrums of all RDs are applied simultaneously to Random Forest algorithm to give a quantitative metric of each ROI importance (RI). Then, the more divided sub-band spectral powers are reinforced by RI, and they are interpolated to a 2-dimensional (2D) plane transformed from 3D space of all RDs, yielding an ensemble representation of RD feature image sequences (ERDFIS). Furthermore, a lightweight network, including 2D separable convolution and gated recurrent unit (2DSCG), is developed to extract and classify the frequency-spatial and temporal features from ERDFIS, forming a novel MI decoding method in cortical level (called ERDFIS-2DSCG). Based on two public datasets, the decoding accuracies of ten-fold cross-validation are 89.89% and 94.35%, respectively. The results suggest that RD can embody the overall property of ROI in time-frequency-space domains, and ROI importance is helpful to highlight the subject-based characteristics of MI-EEG. Meanwhile, 2DSCG is matched well with ERDFIS, jointly improving the decoding performance.</description><identifier>ISSN: 1534-4320</identifier><identifier>ISSN: 1558-0210</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2024.3461339</identifier><identifier>PMID: 39283802</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adult ; Algorithms ; Brain computer interface ; Brain-Computer Interfaces ; Cerebral Cortex - physiology ; Decoding ; Deep Learning ; EEG source imaging ; Electroencephalography ; Electroencephalography - methods ; Feature extraction ; Female ; Humans ; Image sequences ; Imagination - physiology ; Male ; motor imag- ery ; Motors ; Neural Networks, Computer ; ROI importance ; separable convolution ; Support vector machines ; Time-frequency analysis ; Young Adult</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2024, Vol.32, p.3636-3646</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c315t-86f13e17031ebb5a3712e7aea8d2ad2c2ef9478df5a8bba6e27ea6d4c776c31b3</cites><orcidid>0000-0003-0725-708X ; 0000-0003-0718-8555 ; 0000-0003-0497-1202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39283802$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Linlin</creatorcontrib><creatorcontrib>Li, Mingai</creatorcontrib><creatorcontrib>Xu, Dongqin</creatorcontrib><creatorcontrib>Yang, Yufei</creatorcontrib><title>Cortical ROI Importance Improves MI Decoding From EEG Using Fused Light Neural Network</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>Decoding motor imagery (MI) using deep learning in cortical level has potential in brain computer interface based intelligent rehabilitation. However, a mass of dipoles is inconvenient to extract the personalized features and requires a more complex neural network. In consideration of the structural and functional similarity of the neurons in a neuroanatomical region, i.e., a region of interest (ROI), we propose that the comprehensive performance of each ROI may be reflected by a specific representative dipole (RD), and the time-frequency spectrums of all RDs are applied simultaneously to Random Forest algorithm to give a quantitative metric of each ROI importance (RI). Then, the more divided sub-band spectral powers are reinforced by RI, and they are interpolated to a 2-dimensional (2D) plane transformed from 3D space of all RDs, yielding an ensemble representation of RD feature image sequences (ERDFIS). Furthermore, a lightweight network, including 2D separable convolution and gated recurrent unit (2DSCG), is developed to extract and classify the frequency-spatial and temporal features from ERDFIS, forming a novel MI decoding method in cortical level (called ERDFIS-2DSCG). Based on two public datasets, the decoding accuracies of ten-fold cross-validation are 89.89% and 94.35%, respectively. The results suggest that RD can embody the overall property of ROI in time-frequency-space domains, and ROI importance is helpful to highlight the subject-based characteristics of MI-EEG. Meanwhile, 2DSCG is matched well with ERDFIS, jointly improving the decoding performance.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Brain computer interface</subject><subject>Brain-Computer Interfaces</subject><subject>Cerebral Cortex - physiology</subject><subject>Decoding</subject><subject>Deep Learning</subject><subject>EEG source imaging</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Humans</subject><subject>Image sequences</subject><subject>Imagination - physiology</subject><subject>Male</subject><subject>motor imag- ery</subject><subject>Motors</subject><subject>Neural Networks, Computer</subject><subject>ROI importance</subject><subject>separable convolution</subject><subject>Support vector machines</subject><subject>Time-frequency analysis</subject><subject>Young Adult</subject><issn>1534-4320</issn><issn>1558-0210</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1v1DAQhiNERUvhDyCEfOSSre1xYueIlm2JtGylfnC1_DFZUpJ1aycg_j3J7lL15BnrnWc0erLsA6MLxmh1cbe5vVktOOViAaJkANWr7IwVhcopZ_T1XIPIBXB6mr1N6YFSJstCvslOoeIKFOVn2Y9liEPrTEdurmtS949Ta3YO5zKG35jI95p8RRd8u9uSyxh6slpdkfu0b8eEnqzb7c-BbHCME2WDw58Qf73LThrTJXx_fM-z-8vV3fJbvr6-qpdf1rkDVgy5KhsGyCQFhtYWBiTjKA0a5bnx3HFsKiGVbwqjrDUlcomm9MJJWU4EC-dZfeD6YB70Y2x7E__qYFq9_whxq818X4daMeUKzxrpoBHK0grBA7WssRWKCsqJ9fnAmg5_GjENum-Tw64zOwxj0sBoSQVUQk1Rfoi6GFKK2DyvZlTPbvTejZ7d6KObaejTkT_aHv3zyH8ZU-DjIdAi4gtiqWghAf4BTy2SCg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Wang, Linlin</creator><creator>Li, Mingai</creator><creator>Xu, Dongqin</creator><creator>Yang, Yufei</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0725-708X</orcidid><orcidid>https://orcid.org/0000-0003-0718-8555</orcidid><orcidid>https://orcid.org/0000-0003-0497-1202</orcidid></search><sort><creationdate>2024</creationdate><title>Cortical ROI Importance Improves MI Decoding From EEG Using Fused Light Neural Network</title><author>Wang, Linlin ; Li, Mingai ; Xu, Dongqin ; Yang, Yufei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-86f13e17031ebb5a3712e7aea8d2ad2c2ef9478df5a8bba6e27ea6d4c776c31b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Brain computer interface</topic><topic>Brain-Computer Interfaces</topic><topic>Cerebral Cortex - physiology</topic><topic>Decoding</topic><topic>Deep Learning</topic><topic>EEG source imaging</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Humans</topic><topic>Image sequences</topic><topic>Imagination - physiology</topic><topic>Male</topic><topic>motor imag- ery</topic><topic>Motors</topic><topic>Neural Networks, Computer</topic><topic>ROI importance</topic><topic>separable convolution</topic><topic>Support vector machines</topic><topic>Time-frequency analysis</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Linlin</creatorcontrib><creatorcontrib>Li, Mingai</creatorcontrib><creatorcontrib>Xu, Dongqin</creatorcontrib><creatorcontrib>Yang, Yufei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Linlin</au><au>Li, Mingai</au><au>Xu, Dongqin</au><au>Yang, Yufei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cortical ROI Importance Improves MI Decoding From EEG Using Fused Light Neural Network</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2024</date><risdate>2024</risdate><volume>32</volume><spage>3636</spage><epage>3646</epage><pages>3636-3646</pages><issn>1534-4320</issn><issn>1558-0210</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Decoding motor imagery (MI) using deep learning in cortical level has potential in brain computer interface based intelligent rehabilitation. However, a mass of dipoles is inconvenient to extract the personalized features and requires a more complex neural network. In consideration of the structural and functional similarity of the neurons in a neuroanatomical region, i.e., a region of interest (ROI), we propose that the comprehensive performance of each ROI may be reflected by a specific representative dipole (RD), and the time-frequency spectrums of all RDs are applied simultaneously to Random Forest algorithm to give a quantitative metric of each ROI importance (RI). Then, the more divided sub-band spectral powers are reinforced by RI, and they are interpolated to a 2-dimensional (2D) plane transformed from 3D space of all RDs, yielding an ensemble representation of RD feature image sequences (ERDFIS). Furthermore, a lightweight network, including 2D separable convolution and gated recurrent unit (2DSCG), is developed to extract and classify the frequency-spatial and temporal features from ERDFIS, forming a novel MI decoding method in cortical level (called ERDFIS-2DSCG). Based on two public datasets, the decoding accuracies of ten-fold cross-validation are 89.89% and 94.35%, respectively. The results suggest that RD can embody the overall property of ROI in time-frequency-space domains, and ROI importance is helpful to highlight the subject-based characteristics of MI-EEG. Meanwhile, 2DSCG is matched well with ERDFIS, jointly improving the decoding performance.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39283802</pmid><doi>10.1109/TNSRE.2024.3461339</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0725-708X</orcidid><orcidid>https://orcid.org/0000-0003-0718-8555</orcidid><orcidid>https://orcid.org/0000-0003-0497-1202</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-4320
ispartof IEEE transactions on neural systems and rehabilitation engineering, 2024, Vol.32, p.3636-3646
issn 1534-4320
1558-0210
1558-0210
language eng
recordid cdi_ieee_primary_10680573
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adult
Algorithms
Brain computer interface
Brain-Computer Interfaces
Cerebral Cortex - physiology
Decoding
Deep Learning
EEG source imaging
Electroencephalography
Electroencephalography - methods
Feature extraction
Female
Humans
Image sequences
Imagination - physiology
Male
motor imag- ery
Motors
Neural Networks, Computer
ROI importance
separable convolution
Support vector machines
Time-frequency analysis
Young Adult
title Cortical ROI Importance Improves MI Decoding From EEG Using Fused Light Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A34%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cortical%20ROI%20Importance%20Improves%20MI%20Decoding%20From%20EEG%20Using%20Fused%20Light%20Neural%20Network&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Wang,%20Linlin&rft.date=2024&rft.volume=32&rft.spage=3636&rft.epage=3646&rft.pages=3636-3646&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2024.3461339&rft_dat=%3Cproquest_ieee_%3E3106043948%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106043948&rft_id=info:pmid/39283802&rft_ieee_id=10680573&rft_doaj_id=oai_doaj_org_article_818c5d1f7c3f48b09e3d30b1fb9e4936&rfr_iscdi=true