Image-Based Outlet Fire Causing Classification Using CNN-Based Deep Learning Models
Accidents resulting from fires caused by electrical devices are frequent occurrences, inflicting substantial damage to both human lives and infrastructure in the Republic of Korea. To ascertain whether these fires stem from external or internal infrastructure factors, investigators such as the polic...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.135104-135116 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 135116 |
---|---|
container_issue | |
container_start_page | 135104 |
container_title | IEEE access |
container_volume | 12 |
creator | Lee, Hoon-Gi Pham, Thi-Ngot Nguyen, Viet-Hoan Kwon, Ki-Ryong Lee, Jae-Hun Huh, Jun-Ho |
description | Accidents resulting from fires caused by electrical devices are frequent occurrences, inflicting substantial damage to both human lives and infrastructure in the Republic of Korea. To ascertain whether these fires stem from external or internal infrastructure factors, investigators such as the police, The National Institute of Scientific Investigation, and the National Fire Research Institute conduct fire-causing inspections. However, obtaining conclusive results in this regard is an intricate process, exacerbated by the dearth of adequate digital forensics tools and related programs. Among electrical devices, multi-socket outlets also contribute to fire incidents. This study explores the feasibility of employing CNN-based deep learning object detection models for fire-causing inspection systems targeting multi-socket outlets. Specifically, we introduce a novel image dataset comprising 6009 images of post-fire multi-socket outlets remaining, categorized into two classes: "burnt-in" and "burnt-out." This dataset is utilized for training various models, including the YOLO-series (v5, v6, and v8), Faster-RCNN, RetinaNet, and SSD. Results from our experiments show the feasibility of six CNN models in detecting the cause of fire in post-fire sockets. Particularly, YOLOv5s surpasses other models with an accuracy of 89.1% mAP@0.5, a model size of 14.4MB, and an inference time of 44.5ms (equivalent to 22 fps) on RTX 3050. Subsequently, the trained models are implemented in an operational application for trial testing during an executive period. |
doi_str_mv | 10.1109/ACCESS.2024.3461319 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10680523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10680523</ieee_id><doaj_id>oai_doaj_org_article_db6dcaaac8fd4bd78d47384111c77e51</doaj_id><sourcerecordid>3112229175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-60c45f3bfbebd8f3691c9aeee4af65e41757fdd15e7c2a8b958884b35ff615783</originalsourceid><addsrcrecordid>eNpNUU1P20AQtSqQioBfQA-Wenbq2W8fqYE2UoBD4Lwa785GG5k47DoH_n2dOkLMZUZP89680SuKG6gXAHXz67Zt79frBauZWHChgEPzrbhgoJqKS67Ovszfi-uct_VUZoKkvijWyzfcUPUbM_ny-TD2NJYPMVHZ4iHH3aZse8w5huhwjMOufJ3Bp6cT5Y5oX64I0-6IPw6e-nxVnAfsM12f-mXx-nD_0v6tVs9_lu3tqnLMNGOlaidk4F3oqPMmcNWAa5CIBAYlSYCWOngPkrRjaLpGGmNEx2UICqQ2_LJYzrp-wK3dp_iG6cMOGO1_YEgbi2mMrifrO-UdIjoTvOi8Nl5obgQAOK1JwqT1c9bap-H9QHm02-GQdpN9ywEYY81kZ9ri85ZLQ86JwudVqO0xDDuHYY9h2FMYE-vHzIrTc18YytSScf4P556E8w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112229175</pqid></control><display><type>article</type><title>Image-Based Outlet Fire Causing Classification Using CNN-Based Deep Learning Models</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lee, Hoon-Gi ; Pham, Thi-Ngot ; Nguyen, Viet-Hoan ; Kwon, Ki-Ryong ; Lee, Jae-Hun ; Huh, Jun-Ho</creator><creatorcontrib>Lee, Hoon-Gi ; Pham, Thi-Ngot ; Nguyen, Viet-Hoan ; Kwon, Ki-Ryong ; Lee, Jae-Hun ; Huh, Jun-Ho</creatorcontrib><description>Accidents resulting from fires caused by electrical devices are frequent occurrences, inflicting substantial damage to both human lives and infrastructure in the Republic of Korea. To ascertain whether these fires stem from external or internal infrastructure factors, investigators such as the police, The National Institute of Scientific Investigation, and the National Fire Research Institute conduct fire-causing inspections. However, obtaining conclusive results in this regard is an intricate process, exacerbated by the dearth of adequate digital forensics tools and related programs. Among electrical devices, multi-socket outlets also contribute to fire incidents. This study explores the feasibility of employing CNN-based deep learning object detection models for fire-causing inspection systems targeting multi-socket outlets. Specifically, we introduce a novel image dataset comprising 6009 images of post-fire multi-socket outlets remaining, categorized into two classes: "burnt-in" and "burnt-out." This dataset is utilized for training various models, including the YOLO-series (v5, v6, and v8), Faster-RCNN, RetinaNet, and SSD. Results from our experiments show the feasibility of six CNN models in detecting the cause of fire in post-fire sockets. Particularly, YOLOv5s surpasses other models with an accuracy of 89.1% mAP@0.5, a model size of 14.4MB, and an inference time of 44.5ms (equivalent to 22 fps) on RTX 3050. Subsequently, the trained models are implemented in an operational application for trial testing during an executive period.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3461319</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; application ; Artificial neural networks ; CNN ; Convolutional neural networks ; Datasets ; Deep learning ; Detectors ; Digital imaging ; Feasibility studies ; fire ; Fire damage ; fire identification ; Fire prevention ; Fire safety ; Fires ; Forensic computing ; identification ; Infrastructure ; Machine learning ; multi-socket cause fire ; object detection ; Object recognition ; Oceans ; Sockets ; YOLO</subject><ispartof>IEEE access, 2024, Vol.12, p.135104-135116</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-60c45f3bfbebd8f3691c9aeee4af65e41757fdd15e7c2a8b958884b35ff615783</cites><orcidid>0000-0001-6735-6456 ; 0000-0002-1879-748X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10680523$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Lee, Hoon-Gi</creatorcontrib><creatorcontrib>Pham, Thi-Ngot</creatorcontrib><creatorcontrib>Nguyen, Viet-Hoan</creatorcontrib><creatorcontrib>Kwon, Ki-Ryong</creatorcontrib><creatorcontrib>Lee, Jae-Hun</creatorcontrib><creatorcontrib>Huh, Jun-Ho</creatorcontrib><title>Image-Based Outlet Fire Causing Classification Using CNN-Based Deep Learning Models</title><title>IEEE access</title><addtitle>Access</addtitle><description>Accidents resulting from fires caused by electrical devices are frequent occurrences, inflicting substantial damage to both human lives and infrastructure in the Republic of Korea. To ascertain whether these fires stem from external or internal infrastructure factors, investigators such as the police, The National Institute of Scientific Investigation, and the National Fire Research Institute conduct fire-causing inspections. However, obtaining conclusive results in this regard is an intricate process, exacerbated by the dearth of adequate digital forensics tools and related programs. Among electrical devices, multi-socket outlets also contribute to fire incidents. This study explores the feasibility of employing CNN-based deep learning object detection models for fire-causing inspection systems targeting multi-socket outlets. Specifically, we introduce a novel image dataset comprising 6009 images of post-fire multi-socket outlets remaining, categorized into two classes: "burnt-in" and "burnt-out." This dataset is utilized for training various models, including the YOLO-series (v5, v6, and v8), Faster-RCNN, RetinaNet, and SSD. Results from our experiments show the feasibility of six CNN models in detecting the cause of fire in post-fire sockets. Particularly, YOLOv5s surpasses other models with an accuracy of 89.1% mAP@0.5, a model size of 14.4MB, and an inference time of 44.5ms (equivalent to 22 fps) on RTX 3050. Subsequently, the trained models are implemented in an operational application for trial testing during an executive period.</description><subject>Accuracy</subject><subject>application</subject><subject>Artificial neural networks</subject><subject>CNN</subject><subject>Convolutional neural networks</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Detectors</subject><subject>Digital imaging</subject><subject>Feasibility studies</subject><subject>fire</subject><subject>Fire damage</subject><subject>fire identification</subject><subject>Fire prevention</subject><subject>Fire safety</subject><subject>Fires</subject><subject>Forensic computing</subject><subject>identification</subject><subject>Infrastructure</subject><subject>Machine learning</subject><subject>multi-socket cause fire</subject><subject>object detection</subject><subject>Object recognition</subject><subject>Oceans</subject><subject>Sockets</subject><subject>YOLO</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1P20AQtSqQioBfQA-Wenbq2W8fqYE2UoBD4Lwa785GG5k47DoH_n2dOkLMZUZP89680SuKG6gXAHXz67Zt79frBauZWHChgEPzrbhgoJqKS67Ovszfi-uct_VUZoKkvijWyzfcUPUbM_ny-TD2NJYPMVHZ4iHH3aZse8w5huhwjMOufJ3Bp6cT5Y5oX64I0-6IPw6e-nxVnAfsM12f-mXx-nD_0v6tVs9_lu3tqnLMNGOlaidk4F3oqPMmcNWAa5CIBAYlSYCWOngPkrRjaLpGGmNEx2UICqQ2_LJYzrp-wK3dp_iG6cMOGO1_YEgbi2mMrifrO-UdIjoTvOi8Nl5obgQAOK1JwqT1c9bap-H9QHm02-GQdpN9ywEYY81kZ9ri85ZLQ86JwudVqO0xDDuHYY9h2FMYE-vHzIrTc18YytSScf4P556E8w</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lee, Hoon-Gi</creator><creator>Pham, Thi-Ngot</creator><creator>Nguyen, Viet-Hoan</creator><creator>Kwon, Ki-Ryong</creator><creator>Lee, Jae-Hun</creator><creator>Huh, Jun-Ho</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6735-6456</orcidid><orcidid>https://orcid.org/0000-0002-1879-748X</orcidid></search><sort><creationdate>2024</creationdate><title>Image-Based Outlet Fire Causing Classification Using CNN-Based Deep Learning Models</title><author>Lee, Hoon-Gi ; Pham, Thi-Ngot ; Nguyen, Viet-Hoan ; Kwon, Ki-Ryong ; Lee, Jae-Hun ; Huh, Jun-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-60c45f3bfbebd8f3691c9aeee4af65e41757fdd15e7c2a8b958884b35ff615783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>application</topic><topic>Artificial neural networks</topic><topic>CNN</topic><topic>Convolutional neural networks</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Detectors</topic><topic>Digital imaging</topic><topic>Feasibility studies</topic><topic>fire</topic><topic>Fire damage</topic><topic>fire identification</topic><topic>Fire prevention</topic><topic>Fire safety</topic><topic>Fires</topic><topic>Forensic computing</topic><topic>identification</topic><topic>Infrastructure</topic><topic>Machine learning</topic><topic>multi-socket cause fire</topic><topic>object detection</topic><topic>Object recognition</topic><topic>Oceans</topic><topic>Sockets</topic><topic>YOLO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hoon-Gi</creatorcontrib><creatorcontrib>Pham, Thi-Ngot</creatorcontrib><creatorcontrib>Nguyen, Viet-Hoan</creatorcontrib><creatorcontrib>Kwon, Ki-Ryong</creatorcontrib><creatorcontrib>Lee, Jae-Hun</creatorcontrib><creatorcontrib>Huh, Jun-Ho</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hoon-Gi</au><au>Pham, Thi-Ngot</au><au>Nguyen, Viet-Hoan</au><au>Kwon, Ki-Ryong</au><au>Lee, Jae-Hun</au><au>Huh, Jun-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image-Based Outlet Fire Causing Classification Using CNN-Based Deep Learning Models</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>135104</spage><epage>135116</epage><pages>135104-135116</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Accidents resulting from fires caused by electrical devices are frequent occurrences, inflicting substantial damage to both human lives and infrastructure in the Republic of Korea. To ascertain whether these fires stem from external or internal infrastructure factors, investigators such as the police, The National Institute of Scientific Investigation, and the National Fire Research Institute conduct fire-causing inspections. However, obtaining conclusive results in this regard is an intricate process, exacerbated by the dearth of adequate digital forensics tools and related programs. Among electrical devices, multi-socket outlets also contribute to fire incidents. This study explores the feasibility of employing CNN-based deep learning object detection models for fire-causing inspection systems targeting multi-socket outlets. Specifically, we introduce a novel image dataset comprising 6009 images of post-fire multi-socket outlets remaining, categorized into two classes: "burnt-in" and "burnt-out." This dataset is utilized for training various models, including the YOLO-series (v5, v6, and v8), Faster-RCNN, RetinaNet, and SSD. Results from our experiments show the feasibility of six CNN models in detecting the cause of fire in post-fire sockets. Particularly, YOLOv5s surpasses other models with an accuracy of 89.1% mAP@0.5, a model size of 14.4MB, and an inference time of 44.5ms (equivalent to 22 fps) on RTX 3050. Subsequently, the trained models are implemented in an operational application for trial testing during an executive period.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3461319</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6735-6456</orcidid><orcidid>https://orcid.org/0000-0002-1879-748X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.135104-135116 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10680523 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy application Artificial neural networks CNN Convolutional neural networks Datasets Deep learning Detectors Digital imaging Feasibility studies fire Fire damage fire identification Fire prevention Fire safety Fires Forensic computing identification Infrastructure Machine learning multi-socket cause fire object detection Object recognition Oceans Sockets YOLO |
title | Image-Based Outlet Fire Causing Classification Using CNN-Based Deep Learning Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image-Based%20Outlet%20Fire%20Causing%20Classification%20Using%20CNN-Based%20Deep%20Learning%20Models&rft.jtitle=IEEE%20access&rft.au=Lee,%20Hoon-Gi&rft.date=2024&rft.volume=12&rft.spage=135104&rft.epage=135116&rft.pages=135104-135116&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3461319&rft_dat=%3Cproquest_ieee_%3E3112229175%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112229175&rft_id=info:pmid/&rft_ieee_id=10680523&rft_doaj_id=oai_doaj_org_article_db6dcaaac8fd4bd78d47384111c77e51&rfr_iscdi=true |