Image-Based Outlet Fire Causing Classification Using CNN-Based Deep Learning Models

Accidents resulting from fires caused by electrical devices are frequent occurrences, inflicting substantial damage to both human lives and infrastructure in the Republic of Korea. To ascertain whether these fires stem from external or internal infrastructure factors, investigators such as the polic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.135104-135116
Hauptverfasser: Lee, Hoon-Gi, Pham, Thi-Ngot, Nguyen, Viet-Hoan, Kwon, Ki-Ryong, Lee, Jae-Hun, Huh, Jun-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 135116
container_issue
container_start_page 135104
container_title IEEE access
container_volume 12
creator Lee, Hoon-Gi
Pham, Thi-Ngot
Nguyen, Viet-Hoan
Kwon, Ki-Ryong
Lee, Jae-Hun
Huh, Jun-Ho
description Accidents resulting from fires caused by electrical devices are frequent occurrences, inflicting substantial damage to both human lives and infrastructure in the Republic of Korea. To ascertain whether these fires stem from external or internal infrastructure factors, investigators such as the police, The National Institute of Scientific Investigation, and the National Fire Research Institute conduct fire-causing inspections. However, obtaining conclusive results in this regard is an intricate process, exacerbated by the dearth of adequate digital forensics tools and related programs. Among electrical devices, multi-socket outlets also contribute to fire incidents. This study explores the feasibility of employing CNN-based deep learning object detection models for fire-causing inspection systems targeting multi-socket outlets. Specifically, we introduce a novel image dataset comprising 6009 images of post-fire multi-socket outlets remaining, categorized into two classes: "burnt-in" and "burnt-out." This dataset is utilized for training various models, including the YOLO-series (v5, v6, and v8), Faster-RCNN, RetinaNet, and SSD. Results from our experiments show the feasibility of six CNN models in detecting the cause of fire in post-fire sockets. Particularly, YOLOv5s surpasses other models with an accuracy of 89.1% mAP@0.5, a model size of 14.4MB, and an inference time of 44.5ms (equivalent to 22 fps) on RTX 3050. Subsequently, the trained models are implemented in an operational application for trial testing during an executive period.
doi_str_mv 10.1109/ACCESS.2024.3461319
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10680523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10680523</ieee_id><doaj_id>oai_doaj_org_article_db6dcaaac8fd4bd78d47384111c77e51</doaj_id><sourcerecordid>3112229175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-60c45f3bfbebd8f3691c9aeee4af65e41757fdd15e7c2a8b958884b35ff615783</originalsourceid><addsrcrecordid>eNpNUU1P20AQtSqQioBfQA-Wenbq2W8fqYE2UoBD4Lwa785GG5k47DoH_n2dOkLMZUZP89680SuKG6gXAHXz67Zt79frBauZWHChgEPzrbhgoJqKS67Ovszfi-uct_VUZoKkvijWyzfcUPUbM_ny-TD2NJYPMVHZ4iHH3aZse8w5huhwjMOufJ3Bp6cT5Y5oX64I0-6IPw6e-nxVnAfsM12f-mXx-nD_0v6tVs9_lu3tqnLMNGOlaidk4F3oqPMmcNWAa5CIBAYlSYCWOngPkrRjaLpGGmNEx2UICqQ2_LJYzrp-wK3dp_iG6cMOGO1_YEgbi2mMrifrO-UdIjoTvOi8Nl5obgQAOK1JwqT1c9bap-H9QHm02-GQdpN9ywEYY81kZ9ri85ZLQ86JwudVqO0xDDuHYY9h2FMYE-vHzIrTc18YytSScf4P556E8w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112229175</pqid></control><display><type>article</type><title>Image-Based Outlet Fire Causing Classification Using CNN-Based Deep Learning Models</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lee, Hoon-Gi ; Pham, Thi-Ngot ; Nguyen, Viet-Hoan ; Kwon, Ki-Ryong ; Lee, Jae-Hun ; Huh, Jun-Ho</creator><creatorcontrib>Lee, Hoon-Gi ; Pham, Thi-Ngot ; Nguyen, Viet-Hoan ; Kwon, Ki-Ryong ; Lee, Jae-Hun ; Huh, Jun-Ho</creatorcontrib><description>Accidents resulting from fires caused by electrical devices are frequent occurrences, inflicting substantial damage to both human lives and infrastructure in the Republic of Korea. To ascertain whether these fires stem from external or internal infrastructure factors, investigators such as the police, The National Institute of Scientific Investigation, and the National Fire Research Institute conduct fire-causing inspections. However, obtaining conclusive results in this regard is an intricate process, exacerbated by the dearth of adequate digital forensics tools and related programs. Among electrical devices, multi-socket outlets also contribute to fire incidents. This study explores the feasibility of employing CNN-based deep learning object detection models for fire-causing inspection systems targeting multi-socket outlets. Specifically, we introduce a novel image dataset comprising 6009 images of post-fire multi-socket outlets remaining, categorized into two classes: "burnt-in" and "burnt-out." This dataset is utilized for training various models, including the YOLO-series (v5, v6, and v8), Faster-RCNN, RetinaNet, and SSD. Results from our experiments show the feasibility of six CNN models in detecting the cause of fire in post-fire sockets. Particularly, YOLOv5s surpasses other models with an accuracy of 89.1% mAP@0.5, a model size of 14.4MB, and an inference time of 44.5ms (equivalent to 22 fps) on RTX 3050. Subsequently, the trained models are implemented in an operational application for trial testing during an executive period.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3461319</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; application ; Artificial neural networks ; CNN ; Convolutional neural networks ; Datasets ; Deep learning ; Detectors ; Digital imaging ; Feasibility studies ; fire ; Fire damage ; fire identification ; Fire prevention ; Fire safety ; Fires ; Forensic computing ; identification ; Infrastructure ; Machine learning ; multi-socket cause fire ; object detection ; Object recognition ; Oceans ; Sockets ; YOLO</subject><ispartof>IEEE access, 2024, Vol.12, p.135104-135116</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-60c45f3bfbebd8f3691c9aeee4af65e41757fdd15e7c2a8b958884b35ff615783</cites><orcidid>0000-0001-6735-6456 ; 0000-0002-1879-748X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10680523$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Lee, Hoon-Gi</creatorcontrib><creatorcontrib>Pham, Thi-Ngot</creatorcontrib><creatorcontrib>Nguyen, Viet-Hoan</creatorcontrib><creatorcontrib>Kwon, Ki-Ryong</creatorcontrib><creatorcontrib>Lee, Jae-Hun</creatorcontrib><creatorcontrib>Huh, Jun-Ho</creatorcontrib><title>Image-Based Outlet Fire Causing Classification Using CNN-Based Deep Learning Models</title><title>IEEE access</title><addtitle>Access</addtitle><description>Accidents resulting from fires caused by electrical devices are frequent occurrences, inflicting substantial damage to both human lives and infrastructure in the Republic of Korea. To ascertain whether these fires stem from external or internal infrastructure factors, investigators such as the police, The National Institute of Scientific Investigation, and the National Fire Research Institute conduct fire-causing inspections. However, obtaining conclusive results in this regard is an intricate process, exacerbated by the dearth of adequate digital forensics tools and related programs. Among electrical devices, multi-socket outlets also contribute to fire incidents. This study explores the feasibility of employing CNN-based deep learning object detection models for fire-causing inspection systems targeting multi-socket outlets. Specifically, we introduce a novel image dataset comprising 6009 images of post-fire multi-socket outlets remaining, categorized into two classes: "burnt-in" and "burnt-out." This dataset is utilized for training various models, including the YOLO-series (v5, v6, and v8), Faster-RCNN, RetinaNet, and SSD. Results from our experiments show the feasibility of six CNN models in detecting the cause of fire in post-fire sockets. Particularly, YOLOv5s surpasses other models with an accuracy of 89.1% mAP@0.5, a model size of 14.4MB, and an inference time of 44.5ms (equivalent to 22 fps) on RTX 3050. Subsequently, the trained models are implemented in an operational application for trial testing during an executive period.</description><subject>Accuracy</subject><subject>application</subject><subject>Artificial neural networks</subject><subject>CNN</subject><subject>Convolutional neural networks</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Detectors</subject><subject>Digital imaging</subject><subject>Feasibility studies</subject><subject>fire</subject><subject>Fire damage</subject><subject>fire identification</subject><subject>Fire prevention</subject><subject>Fire safety</subject><subject>Fires</subject><subject>Forensic computing</subject><subject>identification</subject><subject>Infrastructure</subject><subject>Machine learning</subject><subject>multi-socket cause fire</subject><subject>object detection</subject><subject>Object recognition</subject><subject>Oceans</subject><subject>Sockets</subject><subject>YOLO</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1P20AQtSqQioBfQA-Wenbq2W8fqYE2UoBD4Lwa785GG5k47DoH_n2dOkLMZUZP89680SuKG6gXAHXz67Zt79frBauZWHChgEPzrbhgoJqKS67Ovszfi-uct_VUZoKkvijWyzfcUPUbM_ny-TD2NJYPMVHZ4iHH3aZse8w5huhwjMOufJ3Bp6cT5Y5oX64I0-6IPw6e-nxVnAfsM12f-mXx-nD_0v6tVs9_lu3tqnLMNGOlaidk4F3oqPMmcNWAa5CIBAYlSYCWOngPkrRjaLpGGmNEx2UICqQ2_LJYzrp-wK3dp_iG6cMOGO1_YEgbi2mMrifrO-UdIjoTvOi8Nl5obgQAOK1JwqT1c9bap-H9QHm02-GQdpN9ywEYY81kZ9ri85ZLQ86JwudVqO0xDDuHYY9h2FMYE-vHzIrTc18YytSScf4P556E8w</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lee, Hoon-Gi</creator><creator>Pham, Thi-Ngot</creator><creator>Nguyen, Viet-Hoan</creator><creator>Kwon, Ki-Ryong</creator><creator>Lee, Jae-Hun</creator><creator>Huh, Jun-Ho</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6735-6456</orcidid><orcidid>https://orcid.org/0000-0002-1879-748X</orcidid></search><sort><creationdate>2024</creationdate><title>Image-Based Outlet Fire Causing Classification Using CNN-Based Deep Learning Models</title><author>Lee, Hoon-Gi ; Pham, Thi-Ngot ; Nguyen, Viet-Hoan ; Kwon, Ki-Ryong ; Lee, Jae-Hun ; Huh, Jun-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-60c45f3bfbebd8f3691c9aeee4af65e41757fdd15e7c2a8b958884b35ff615783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>application</topic><topic>Artificial neural networks</topic><topic>CNN</topic><topic>Convolutional neural networks</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Detectors</topic><topic>Digital imaging</topic><topic>Feasibility studies</topic><topic>fire</topic><topic>Fire damage</topic><topic>fire identification</topic><topic>Fire prevention</topic><topic>Fire safety</topic><topic>Fires</topic><topic>Forensic computing</topic><topic>identification</topic><topic>Infrastructure</topic><topic>Machine learning</topic><topic>multi-socket cause fire</topic><topic>object detection</topic><topic>Object recognition</topic><topic>Oceans</topic><topic>Sockets</topic><topic>YOLO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hoon-Gi</creatorcontrib><creatorcontrib>Pham, Thi-Ngot</creatorcontrib><creatorcontrib>Nguyen, Viet-Hoan</creatorcontrib><creatorcontrib>Kwon, Ki-Ryong</creatorcontrib><creatorcontrib>Lee, Jae-Hun</creatorcontrib><creatorcontrib>Huh, Jun-Ho</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hoon-Gi</au><au>Pham, Thi-Ngot</au><au>Nguyen, Viet-Hoan</au><au>Kwon, Ki-Ryong</au><au>Lee, Jae-Hun</au><au>Huh, Jun-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image-Based Outlet Fire Causing Classification Using CNN-Based Deep Learning Models</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>135104</spage><epage>135116</epage><pages>135104-135116</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Accidents resulting from fires caused by electrical devices are frequent occurrences, inflicting substantial damage to both human lives and infrastructure in the Republic of Korea. To ascertain whether these fires stem from external or internal infrastructure factors, investigators such as the police, The National Institute of Scientific Investigation, and the National Fire Research Institute conduct fire-causing inspections. However, obtaining conclusive results in this regard is an intricate process, exacerbated by the dearth of adequate digital forensics tools and related programs. Among electrical devices, multi-socket outlets also contribute to fire incidents. This study explores the feasibility of employing CNN-based deep learning object detection models for fire-causing inspection systems targeting multi-socket outlets. Specifically, we introduce a novel image dataset comprising 6009 images of post-fire multi-socket outlets remaining, categorized into two classes: "burnt-in" and "burnt-out." This dataset is utilized for training various models, including the YOLO-series (v5, v6, and v8), Faster-RCNN, RetinaNet, and SSD. Results from our experiments show the feasibility of six CNN models in detecting the cause of fire in post-fire sockets. Particularly, YOLOv5s surpasses other models with an accuracy of 89.1% mAP@0.5, a model size of 14.4MB, and an inference time of 44.5ms (equivalent to 22 fps) on RTX 3050. Subsequently, the trained models are implemented in an operational application for trial testing during an executive period.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3461319</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6735-6456</orcidid><orcidid>https://orcid.org/0000-0002-1879-748X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.135104-135116
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10680523
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
application
Artificial neural networks
CNN
Convolutional neural networks
Datasets
Deep learning
Detectors
Digital imaging
Feasibility studies
fire
Fire damage
fire identification
Fire prevention
Fire safety
Fires
Forensic computing
identification
Infrastructure
Machine learning
multi-socket cause fire
object detection
Object recognition
Oceans
Sockets
YOLO
title Image-Based Outlet Fire Causing Classification Using CNN-Based Deep Learning Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image-Based%20Outlet%20Fire%20Causing%20Classification%20Using%20CNN-Based%20Deep%20Learning%20Models&rft.jtitle=IEEE%20access&rft.au=Lee,%20Hoon-Gi&rft.date=2024&rft.volume=12&rft.spage=135104&rft.epage=135116&rft.pages=135104-135116&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3461319&rft_dat=%3Cproquest_ieee_%3E3112229175%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112229175&rft_id=info:pmid/&rft_ieee_id=10680523&rft_doaj_id=oai_doaj_org_article_db6dcaaac8fd4bd78d47384111c77e51&rfr_iscdi=true