A Privacy-Preserving Framework for Efficient Network Intrusion Detection in Consumer Network Using Quantum Federated Learning
The proliferation of consumer networks has increased vulnerabilities to network intrusions, emphasizing the critical need for robust intrusion detection systems (IDS). The data-driven Artificial Intelligence (AI) approach has gained attention for enhancing IDS capabilities to deal with emerging secu...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on consumer electronics 2024-11, Vol.70 (4), p.7121-7128 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7128 |
---|---|
container_issue | 4 |
container_start_page | 7121 |
container_title | IEEE transactions on consumer electronics |
container_volume | 70 |
creator | Abou El Houda, Zakaria Moudoud, Hajar Brik, Bouziane Adil, Muhammad |
description | The proliferation of consumer networks has increased vulnerabilities to network intrusions, emphasizing the critical need for robust intrusion detection systems (IDS). The data-driven Artificial Intelligence (AI) approach has gained attention for enhancing IDS capabilities to deal with emerging security threats. However, these AI-based IDS face challenges in scalability and privacy preservation. More importantly, they are time-consuming and may perform poorly on high-dimensional and complex data due to the lack of computational resources. To address these shortcomings, in this paper, we introduce a novel framework, called Quantum Federated Learning IDS (QFL-IDS), that merges Quantum Computing (QC) with Federated Learning (FL) to allow for an efficient, robust, and privacy-preserving approach for detecting network intrusions in consumer networks. Leveraging the decentralized nature of FL, QFL-IDS enables multiple consumer devices to collaboratively train a global intrusion detection model while preserving the privacy of individual user data. Furthermore, we leverage the computational power of quantum computing to improve the efficiency of model training and inference processes. We demonstrate the efficacy of our framework through extensive experiments. The obtained results show significant improvements in detection accuracy and computational efficiency compared to the current traditional centralized and federated learning approaches. This makes QFL-IDS a promising framework to cope with the new emerging security threats in a timely and effective manner. |
doi_str_mv | 10.1109/TCE.2024.3458985 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10679217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10679217</ieee_id><sourcerecordid>3151264125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-56daf51e30ec730774c3244b840ff424f800844c2b60caaaa08ee0452bc8ef083</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiYjePXho4nlx-rVbjgRBTYhiAudNKVOzKF1suxgO_ncXIca5zGTmnXcyDyHXDHqMQf9uNhz1OHDZE1LpvlYnpMOU0plkvDglHYC-zgTk4pxcxLgCYFJx3SHfAzoN1dbYXTYNGDFsK_9Gx8Gs8asO79TVgY6cq2yFPtFnTL_dJ59CE6va03tMaNO-qjwd1j42awx_unncu702xqdmTce4xGASLukETfDt6JKcOfMR8eqYu2Q-Hs2Gj9nk5eFpOJhklhUqZSpfGqcYCkBbCCgKaQWXcqElOCe5dBpAS2n5Igdr2gCNCO2DC6vRgRZdcnvw3YT6s8GYylXdBN-eLAVTjOctJdWq4KCyoY4xoCs3oVqbsCsZlHvIZQu53EMuj5DblZvDSoWI_-R50eesED9sq3nt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151264125</pqid></control><display><type>article</type><title>A Privacy-Preserving Framework for Efficient Network Intrusion Detection in Consumer Network Using Quantum Federated Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Abou El Houda, Zakaria ; Moudoud, Hajar ; Brik, Bouziane ; Adil, Muhammad</creator><creatorcontrib>Abou El Houda, Zakaria ; Moudoud, Hajar ; Brik, Bouziane ; Adil, Muhammad</creatorcontrib><description>The proliferation of consumer networks has increased vulnerabilities to network intrusions, emphasizing the critical need for robust intrusion detection systems (IDS). The data-driven Artificial Intelligence (AI) approach has gained attention for enhancing IDS capabilities to deal with emerging security threats. However, these AI-based IDS face challenges in scalability and privacy preservation. More importantly, they are time-consuming and may perform poorly on high-dimensional and complex data due to the lack of computational resources. To address these shortcomings, in this paper, we introduce a novel framework, called Quantum Federated Learning IDS (QFL-IDS), that merges Quantum Computing (QC) with Federated Learning (FL) to allow for an efficient, robust, and privacy-preserving approach for detecting network intrusions in consumer networks. Leveraging the decentralized nature of FL, QFL-IDS enables multiple consumer devices to collaboratively train a global intrusion detection model while preserving the privacy of individual user data. Furthermore, we leverage the computational power of quantum computing to improve the efficiency of model training and inference processes. We demonstrate the efficacy of our framework through extensive experiments. The obtained results show significant improvements in detection accuracy and computational efficiency compared to the current traditional centralized and federated learning approaches. This makes QFL-IDS a promising framework to cope with the new emerging security threats in a timely and effective manner.</description><identifier>ISSN: 0098-3063</identifier><identifier>EISSN: 1558-4127</identifier><identifier>DOI: 10.1109/TCE.2024.3458985</identifier><identifier>CODEN: ITCEDA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Computational modeling ; Computers ; Computing time ; consumer network ; Cybersecurity ; Effectiveness ; Encoding ; Federated learning ; federated learning (FL) ; Intrusion detection systems ; Intrusion detection systems (IDS) ; Logic gates ; Machine learning ; Privacy ; Quantum computing ; quantum computing (QC) ; quantum federated learning ; Qubit ; Robustness</subject><ispartof>IEEE transactions on consumer electronics, 2024-11, Vol.70 (4), p.7121-7128</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-56daf51e30ec730774c3244b840ff424f800844c2b60caaaa08ee0452bc8ef083</cites><orcidid>0000-0003-2979-0862 ; 0000-0003-4494-8576 ; 0000-0002-2893-1101 ; 0000-0002-3267-5702</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10679217$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10679217$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abou El Houda, Zakaria</creatorcontrib><creatorcontrib>Moudoud, Hajar</creatorcontrib><creatorcontrib>Brik, Bouziane</creatorcontrib><creatorcontrib>Adil, Muhammad</creatorcontrib><title>A Privacy-Preserving Framework for Efficient Network Intrusion Detection in Consumer Network Using Quantum Federated Learning</title><title>IEEE transactions on consumer electronics</title><addtitle>T-CE</addtitle><description>The proliferation of consumer networks has increased vulnerabilities to network intrusions, emphasizing the critical need for robust intrusion detection systems (IDS). The data-driven Artificial Intelligence (AI) approach has gained attention for enhancing IDS capabilities to deal with emerging security threats. However, these AI-based IDS face challenges in scalability and privacy preservation. More importantly, they are time-consuming and may perform poorly on high-dimensional and complex data due to the lack of computational resources. To address these shortcomings, in this paper, we introduce a novel framework, called Quantum Federated Learning IDS (QFL-IDS), that merges Quantum Computing (QC) with Federated Learning (FL) to allow for an efficient, robust, and privacy-preserving approach for detecting network intrusions in consumer networks. Leveraging the decentralized nature of FL, QFL-IDS enables multiple consumer devices to collaboratively train a global intrusion detection model while preserving the privacy of individual user data. Furthermore, we leverage the computational power of quantum computing to improve the efficiency of model training and inference processes. We demonstrate the efficacy of our framework through extensive experiments. The obtained results show significant improvements in detection accuracy and computational efficiency compared to the current traditional centralized and federated learning approaches. This makes QFL-IDS a promising framework to cope with the new emerging security threats in a timely and effective manner.</description><subject>Artificial intelligence</subject><subject>Computational modeling</subject><subject>Computers</subject><subject>Computing time</subject><subject>consumer network</subject><subject>Cybersecurity</subject><subject>Effectiveness</subject><subject>Encoding</subject><subject>Federated learning</subject><subject>federated learning (FL)</subject><subject>Intrusion detection systems</subject><subject>Intrusion detection systems (IDS)</subject><subject>Logic gates</subject><subject>Machine learning</subject><subject>Privacy</subject><subject>Quantum computing</subject><subject>quantum computing (QC)</subject><subject>quantum federated learning</subject><subject>Qubit</subject><subject>Robustness</subject><issn>0098-3063</issn><issn>1558-4127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEQhhujiYjePXho4nlx-rVbjgRBTYhiAudNKVOzKF1suxgO_ncXIca5zGTmnXcyDyHXDHqMQf9uNhz1OHDZE1LpvlYnpMOU0plkvDglHYC-zgTk4pxcxLgCYFJx3SHfAzoN1dbYXTYNGDFsK_9Gx8Gs8asO79TVgY6cq2yFPtFnTL_dJ59CE6va03tMaNO-qjwd1j42awx_unncu702xqdmTce4xGASLukETfDt6JKcOfMR8eqYu2Q-Hs2Gj9nk5eFpOJhklhUqZSpfGqcYCkBbCCgKaQWXcqElOCe5dBpAS2n5Igdr2gCNCO2DC6vRgRZdcnvw3YT6s8GYylXdBN-eLAVTjOctJdWq4KCyoY4xoCs3oVqbsCsZlHvIZQu53EMuj5DblZvDSoWI_-R50eesED9sq3nt</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Abou El Houda, Zakaria</creator><creator>Moudoud, Hajar</creator><creator>Brik, Bouziane</creator><creator>Adil, Muhammad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2979-0862</orcidid><orcidid>https://orcid.org/0000-0003-4494-8576</orcidid><orcidid>https://orcid.org/0000-0002-2893-1101</orcidid><orcidid>https://orcid.org/0000-0002-3267-5702</orcidid></search><sort><creationdate>20241101</creationdate><title>A Privacy-Preserving Framework for Efficient Network Intrusion Detection in Consumer Network Using Quantum Federated Learning</title><author>Abou El Houda, Zakaria ; Moudoud, Hajar ; Brik, Bouziane ; Adil, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-56daf51e30ec730774c3244b840ff424f800844c2b60caaaa08ee0452bc8ef083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Computational modeling</topic><topic>Computers</topic><topic>Computing time</topic><topic>consumer network</topic><topic>Cybersecurity</topic><topic>Effectiveness</topic><topic>Encoding</topic><topic>Federated learning</topic><topic>federated learning (FL)</topic><topic>Intrusion detection systems</topic><topic>Intrusion detection systems (IDS)</topic><topic>Logic gates</topic><topic>Machine learning</topic><topic>Privacy</topic><topic>Quantum computing</topic><topic>quantum computing (QC)</topic><topic>quantum federated learning</topic><topic>Qubit</topic><topic>Robustness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abou El Houda, Zakaria</creatorcontrib><creatorcontrib>Moudoud, Hajar</creatorcontrib><creatorcontrib>Brik, Bouziane</creatorcontrib><creatorcontrib>Adil, Muhammad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on consumer electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abou El Houda, Zakaria</au><au>Moudoud, Hajar</au><au>Brik, Bouziane</au><au>Adil, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Privacy-Preserving Framework for Efficient Network Intrusion Detection in Consumer Network Using Quantum Federated Learning</atitle><jtitle>IEEE transactions on consumer electronics</jtitle><stitle>T-CE</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>70</volume><issue>4</issue><spage>7121</spage><epage>7128</epage><pages>7121-7128</pages><issn>0098-3063</issn><eissn>1558-4127</eissn><coden>ITCEDA</coden><abstract>The proliferation of consumer networks has increased vulnerabilities to network intrusions, emphasizing the critical need for robust intrusion detection systems (IDS). The data-driven Artificial Intelligence (AI) approach has gained attention for enhancing IDS capabilities to deal with emerging security threats. However, these AI-based IDS face challenges in scalability and privacy preservation. More importantly, they are time-consuming and may perform poorly on high-dimensional and complex data due to the lack of computational resources. To address these shortcomings, in this paper, we introduce a novel framework, called Quantum Federated Learning IDS (QFL-IDS), that merges Quantum Computing (QC) with Federated Learning (FL) to allow for an efficient, robust, and privacy-preserving approach for detecting network intrusions in consumer networks. Leveraging the decentralized nature of FL, QFL-IDS enables multiple consumer devices to collaboratively train a global intrusion detection model while preserving the privacy of individual user data. Furthermore, we leverage the computational power of quantum computing to improve the efficiency of model training and inference processes. We demonstrate the efficacy of our framework through extensive experiments. The obtained results show significant improvements in detection accuracy and computational efficiency compared to the current traditional centralized and federated learning approaches. This makes QFL-IDS a promising framework to cope with the new emerging security threats in a timely and effective manner.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCE.2024.3458985</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2979-0862</orcidid><orcidid>https://orcid.org/0000-0003-4494-8576</orcidid><orcidid>https://orcid.org/0000-0002-2893-1101</orcidid><orcidid>https://orcid.org/0000-0002-3267-5702</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0098-3063 |
ispartof | IEEE transactions on consumer electronics, 2024-11, Vol.70 (4), p.7121-7128 |
issn | 0098-3063 1558-4127 |
language | eng |
recordid | cdi_ieee_primary_10679217 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial intelligence Computational modeling Computers Computing time consumer network Cybersecurity Effectiveness Encoding Federated learning federated learning (FL) Intrusion detection systems Intrusion detection systems (IDS) Logic gates Machine learning Privacy Quantum computing quantum computing (QC) quantum federated learning Qubit Robustness |
title | A Privacy-Preserving Framework for Efficient Network Intrusion Detection in Consumer Network Using Quantum Federated Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A40%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Privacy-Preserving%20Framework%20for%20Efficient%20Network%20Intrusion%20Detection%20in%20Consumer%20Network%20Using%20Quantum%20Federated%20Learning&rft.jtitle=IEEE%20transactions%20on%20consumer%20electronics&rft.au=Abou%20El%20Houda,%20Zakaria&rft.date=2024-11-01&rft.volume=70&rft.issue=4&rft.spage=7121&rft.epage=7128&rft.pages=7121-7128&rft.issn=0098-3063&rft.eissn=1558-4127&rft.coden=ITCEDA&rft_id=info:doi/10.1109/TCE.2024.3458985&rft_dat=%3Cproquest_RIE%3E3151264125%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3151264125&rft_id=info:pmid/&rft_ieee_id=10679217&rfr_iscdi=true |