Generation of realistic air traffic scenarios using a genetic algorithm
Traffic flow management decision support tools such as the user request evaluation tool (URET), developed by the MITRE Center for Advanced Aviation Systems Development, and the Center-TRACON automation system (CTAS), developed by the NASA/Ames Research Center, use simulation as a tool for developmen...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2A1 |
---|---|
container_issue | |
container_start_page | 2A1 |
container_title | |
container_volume | 1 |
creator | Oaks, R.D. Paglione, M. |
description | Traffic flow management decision support tools such as the user request evaluation tool (URET), developed by the MITRE Center for Advanced Aviation Systems Development, and the Center-TRACON automation system (CTAS), developed by the NASA/Ames Research Center, use simulation as a tool for development, technical assessment, and field evaluation. Air traffic scenarios, based on recorded live data, are used to test these decision support tools. Frequently the scenarios need to be modified in order to create aircraft-to-aircraft encounters and conflicts that are not present in the live data. This paper presents an implementation of a genetic algorithm that is being used to time-shift the flights within an air traffic scenario to create encounters with specific constrained characteristics. These constraints are the distributions of the horizontal and vertical closest points of approach, the encounter angle at the closest point of horizontal approach, and the vertical type of encounter. This paper describes how the genetic algorithm was implemented, including a description of the solution chromosome and of the fitness function used to measure the potential solutions. After describing the implementation, a specific example of its use is presented. |
doi_str_mv | 10.1109/DASC.2002.1067908 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1067908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1067908</ieee_id><sourcerecordid>1067908</sourcerecordid><originalsourceid>FETCH-LOGICAL-i638-da34756c699ee2e860e447796239efaa5a1f350a49d33792feec4044c6113eb3</originalsourceid><addsrcrecordid>eNotT9FKxDAQDIignP0A8SU_0LrJpknzeFStwoEP5_ux9jY10mslqQ_-vUVvGJhh2B0YIW4VVEqBv3_Y7ttKA-hKgXUemgtReNfASnS4JleiyPkTVphaNcZei67jiRMtcZ7kHGRiGmNeYi8pJrkkCmH1ueeJUpyz_M5xGiTJYf36uxqHOcXl43QjLgONmYuzbsT-6fGtfS53r91Lu92V0WJTHgmNq21vvWfW3FhgY5zzVqPnQFSTClgDGX9EdF4H5t6AMb1VCvkdN-LuvzUy8-ErxROln8N5LP4CSjNKEQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Generation of realistic air traffic scenarios using a genetic algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Oaks, R.D. ; Paglione, M.</creator><creatorcontrib>Oaks, R.D. ; Paglione, M.</creatorcontrib><description>Traffic flow management decision support tools such as the user request evaluation tool (URET), developed by the MITRE Center for Advanced Aviation Systems Development, and the Center-TRACON automation system (CTAS), developed by the NASA/Ames Research Center, use simulation as a tool for development, technical assessment, and field evaluation. Air traffic scenarios, based on recorded live data, are used to test these decision support tools. Frequently the scenarios need to be modified in order to create aircraft-to-aircraft encounters and conflicts that are not present in the live data. This paper presents an implementation of a genetic algorithm that is being used to time-shift the flights within an air traffic scenario to create encounters with specific constrained characteristics. These constraints are the distributions of the horizontal and vertical closest points of approach, the encounter angle at the closest point of horizontal approach, and the vertical type of encounter. This paper describes how the genetic algorithm was implemented, including a description of the solution chromosome and of the fitness function used to measure the potential solutions. After describing the implementation, a specific example of its use is presented.</description><identifier>ISBN: 9780780373679</identifier><identifier>ISBN: 0780373677</identifier><identifier>DOI: 10.1109/DASC.2002.1067908</identifier><language>eng</language><publisher>IEEE</publisher><subject>Air traffic control ; Aircraft ; Automation ; Cities and towns ; Current measurement ; FAA ; Genetic algorithms ; Probes ; Testing ; Traffic control</subject><ispartof>Proceedings. The 21st Digital Avionics Systems Conference, 2002, Vol.1, p.2A1-2A1</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1067908$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1067908$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Oaks, R.D.</creatorcontrib><creatorcontrib>Paglione, M.</creatorcontrib><title>Generation of realistic air traffic scenarios using a genetic algorithm</title><title>Proceedings. The 21st Digital Avionics Systems Conference</title><addtitle>DASC</addtitle><description>Traffic flow management decision support tools such as the user request evaluation tool (URET), developed by the MITRE Center for Advanced Aviation Systems Development, and the Center-TRACON automation system (CTAS), developed by the NASA/Ames Research Center, use simulation as a tool for development, technical assessment, and field evaluation. Air traffic scenarios, based on recorded live data, are used to test these decision support tools. Frequently the scenarios need to be modified in order to create aircraft-to-aircraft encounters and conflicts that are not present in the live data. This paper presents an implementation of a genetic algorithm that is being used to time-shift the flights within an air traffic scenario to create encounters with specific constrained characteristics. These constraints are the distributions of the horizontal and vertical closest points of approach, the encounter angle at the closest point of horizontal approach, and the vertical type of encounter. This paper describes how the genetic algorithm was implemented, including a description of the solution chromosome and of the fitness function used to measure the potential solutions. After describing the implementation, a specific example of its use is presented.</description><subject>Air traffic control</subject><subject>Aircraft</subject><subject>Automation</subject><subject>Cities and towns</subject><subject>Current measurement</subject><subject>FAA</subject><subject>Genetic algorithms</subject><subject>Probes</subject><subject>Testing</subject><subject>Traffic control</subject><isbn>9780780373679</isbn><isbn>0780373677</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT9FKxDAQDIignP0A8SU_0LrJpknzeFStwoEP5_ux9jY10mslqQ_-vUVvGJhh2B0YIW4VVEqBv3_Y7ttKA-hKgXUemgtReNfASnS4JleiyPkTVphaNcZei67jiRMtcZ7kHGRiGmNeYi8pJrkkCmH1ueeJUpyz_M5xGiTJYf36uxqHOcXl43QjLgONmYuzbsT-6fGtfS53r91Lu92V0WJTHgmNq21vvWfW3FhgY5zzVqPnQFSTClgDGX9EdF4H5t6AMb1VCvkdN-LuvzUy8-ErxROln8N5LP4CSjNKEQ</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Oaks, R.D.</creator><creator>Paglione, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2002</creationdate><title>Generation of realistic air traffic scenarios using a genetic algorithm</title><author>Oaks, R.D. ; Paglione, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i638-da34756c699ee2e860e447796239efaa5a1f350a49d33792feec4044c6113eb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Air traffic control</topic><topic>Aircraft</topic><topic>Automation</topic><topic>Cities and towns</topic><topic>Current measurement</topic><topic>FAA</topic><topic>Genetic algorithms</topic><topic>Probes</topic><topic>Testing</topic><topic>Traffic control</topic><toplevel>online_resources</toplevel><creatorcontrib>Oaks, R.D.</creatorcontrib><creatorcontrib>Paglione, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oaks, R.D.</au><au>Paglione, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Generation of realistic air traffic scenarios using a genetic algorithm</atitle><btitle>Proceedings. The 21st Digital Avionics Systems Conference</btitle><stitle>DASC</stitle><date>2002</date><risdate>2002</risdate><volume>1</volume><spage>2A1</spage><epage>2A1</epage><pages>2A1-2A1</pages><isbn>9780780373679</isbn><isbn>0780373677</isbn><abstract>Traffic flow management decision support tools such as the user request evaluation tool (URET), developed by the MITRE Center for Advanced Aviation Systems Development, and the Center-TRACON automation system (CTAS), developed by the NASA/Ames Research Center, use simulation as a tool for development, technical assessment, and field evaluation. Air traffic scenarios, based on recorded live data, are used to test these decision support tools. Frequently the scenarios need to be modified in order to create aircraft-to-aircraft encounters and conflicts that are not present in the live data. This paper presents an implementation of a genetic algorithm that is being used to time-shift the flights within an air traffic scenario to create encounters with specific constrained characteristics. These constraints are the distributions of the horizontal and vertical closest points of approach, the encounter angle at the closest point of horizontal approach, and the vertical type of encounter. This paper describes how the genetic algorithm was implemented, including a description of the solution chromosome and of the fitness function used to measure the potential solutions. After describing the implementation, a specific example of its use is presented.</abstract><pub>IEEE</pub><doi>10.1109/DASC.2002.1067908</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780373679 |
ispartof | Proceedings. The 21st Digital Avionics Systems Conference, 2002, Vol.1, p.2A1-2A1 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1067908 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Air traffic control Aircraft Automation Cities and towns Current measurement FAA Genetic algorithms Probes Testing Traffic control |
title | Generation of realistic air traffic scenarios using a genetic algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A23%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Generation%20of%20realistic%20air%20traffic%20scenarios%20using%20a%20genetic%20algorithm&rft.btitle=Proceedings.%20The%2021st%20Digital%20Avionics%20Systems%20Conference&rft.au=Oaks,%20R.D.&rft.date=2002&rft.volume=1&rft.spage=2A1&rft.epage=2A1&rft.pages=2A1-2A1&rft.isbn=9780780373679&rft.isbn_list=0780373677&rft_id=info:doi/10.1109/DASC.2002.1067908&rft_dat=%3Cieee_6IE%3E1067908%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1067908&rfr_iscdi=true |