Generation of realistic air traffic scenarios using a genetic algorithm

Traffic flow management decision support tools such as the user request evaluation tool (URET), developed by the MITRE Center for Advanced Aviation Systems Development, and the Center-TRACON automation system (CTAS), developed by the NASA/Ames Research Center, use simulation as a tool for developmen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Oaks, R.D., Paglione, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2A1
container_issue
container_start_page 2A1
container_title
container_volume 1
creator Oaks, R.D.
Paglione, M.
description Traffic flow management decision support tools such as the user request evaluation tool (URET), developed by the MITRE Center for Advanced Aviation Systems Development, and the Center-TRACON automation system (CTAS), developed by the NASA/Ames Research Center, use simulation as a tool for development, technical assessment, and field evaluation. Air traffic scenarios, based on recorded live data, are used to test these decision support tools. Frequently the scenarios need to be modified in order to create aircraft-to-aircraft encounters and conflicts that are not present in the live data. This paper presents an implementation of a genetic algorithm that is being used to time-shift the flights within an air traffic scenario to create encounters with specific constrained characteristics. These constraints are the distributions of the horizontal and vertical closest points of approach, the encounter angle at the closest point of horizontal approach, and the vertical type of encounter. This paper describes how the genetic algorithm was implemented, including a description of the solution chromosome and of the fitness function used to measure the potential solutions. After describing the implementation, a specific example of its use is presented.
doi_str_mv 10.1109/DASC.2002.1067908
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1067908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1067908</ieee_id><sourcerecordid>1067908</sourcerecordid><originalsourceid>FETCH-LOGICAL-i638-da34756c699ee2e860e447796239efaa5a1f350a49d33792feec4044c6113eb3</originalsourceid><addsrcrecordid>eNotT9FKxDAQDIignP0A8SU_0LrJpknzeFStwoEP5_ux9jY10mslqQ_-vUVvGJhh2B0YIW4VVEqBv3_Y7ttKA-hKgXUemgtReNfASnS4JleiyPkTVphaNcZei67jiRMtcZ7kHGRiGmNeYi8pJrkkCmH1ueeJUpyz_M5xGiTJYf36uxqHOcXl43QjLgONmYuzbsT-6fGtfS53r91Lu92V0WJTHgmNq21vvWfW3FhgY5zzVqPnQFSTClgDGX9EdF4H5t6AMb1VCvkdN-LuvzUy8-ErxROln8N5LP4CSjNKEQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Generation of realistic air traffic scenarios using a genetic algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Oaks, R.D. ; Paglione, M.</creator><creatorcontrib>Oaks, R.D. ; Paglione, M.</creatorcontrib><description>Traffic flow management decision support tools such as the user request evaluation tool (URET), developed by the MITRE Center for Advanced Aviation Systems Development, and the Center-TRACON automation system (CTAS), developed by the NASA/Ames Research Center, use simulation as a tool for development, technical assessment, and field evaluation. Air traffic scenarios, based on recorded live data, are used to test these decision support tools. Frequently the scenarios need to be modified in order to create aircraft-to-aircraft encounters and conflicts that are not present in the live data. This paper presents an implementation of a genetic algorithm that is being used to time-shift the flights within an air traffic scenario to create encounters with specific constrained characteristics. These constraints are the distributions of the horizontal and vertical closest points of approach, the encounter angle at the closest point of horizontal approach, and the vertical type of encounter. This paper describes how the genetic algorithm was implemented, including a description of the solution chromosome and of the fitness function used to measure the potential solutions. After describing the implementation, a specific example of its use is presented.</description><identifier>ISBN: 9780780373679</identifier><identifier>ISBN: 0780373677</identifier><identifier>DOI: 10.1109/DASC.2002.1067908</identifier><language>eng</language><publisher>IEEE</publisher><subject>Air traffic control ; Aircraft ; Automation ; Cities and towns ; Current measurement ; FAA ; Genetic algorithms ; Probes ; Testing ; Traffic control</subject><ispartof>Proceedings. The 21st Digital Avionics Systems Conference, 2002, Vol.1, p.2A1-2A1</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1067908$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1067908$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Oaks, R.D.</creatorcontrib><creatorcontrib>Paglione, M.</creatorcontrib><title>Generation of realistic air traffic scenarios using a genetic algorithm</title><title>Proceedings. The 21st Digital Avionics Systems Conference</title><addtitle>DASC</addtitle><description>Traffic flow management decision support tools such as the user request evaluation tool (URET), developed by the MITRE Center for Advanced Aviation Systems Development, and the Center-TRACON automation system (CTAS), developed by the NASA/Ames Research Center, use simulation as a tool for development, technical assessment, and field evaluation. Air traffic scenarios, based on recorded live data, are used to test these decision support tools. Frequently the scenarios need to be modified in order to create aircraft-to-aircraft encounters and conflicts that are not present in the live data. This paper presents an implementation of a genetic algorithm that is being used to time-shift the flights within an air traffic scenario to create encounters with specific constrained characteristics. These constraints are the distributions of the horizontal and vertical closest points of approach, the encounter angle at the closest point of horizontal approach, and the vertical type of encounter. This paper describes how the genetic algorithm was implemented, including a description of the solution chromosome and of the fitness function used to measure the potential solutions. After describing the implementation, a specific example of its use is presented.</description><subject>Air traffic control</subject><subject>Aircraft</subject><subject>Automation</subject><subject>Cities and towns</subject><subject>Current measurement</subject><subject>FAA</subject><subject>Genetic algorithms</subject><subject>Probes</subject><subject>Testing</subject><subject>Traffic control</subject><isbn>9780780373679</isbn><isbn>0780373677</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT9FKxDAQDIignP0A8SU_0LrJpknzeFStwoEP5_ux9jY10mslqQ_-vUVvGJhh2B0YIW4VVEqBv3_Y7ttKA-hKgXUemgtReNfASnS4JleiyPkTVphaNcZei67jiRMtcZ7kHGRiGmNeYi8pJrkkCmH1ueeJUpyz_M5xGiTJYf36uxqHOcXl43QjLgONmYuzbsT-6fGtfS53r91Lu92V0WJTHgmNq21vvWfW3FhgY5zzVqPnQFSTClgDGX9EdF4H5t6AMb1VCvkdN-LuvzUy8-ErxROln8N5LP4CSjNKEQ</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Oaks, R.D.</creator><creator>Paglione, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2002</creationdate><title>Generation of realistic air traffic scenarios using a genetic algorithm</title><author>Oaks, R.D. ; Paglione, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i638-da34756c699ee2e860e447796239efaa5a1f350a49d33792feec4044c6113eb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Air traffic control</topic><topic>Aircraft</topic><topic>Automation</topic><topic>Cities and towns</topic><topic>Current measurement</topic><topic>FAA</topic><topic>Genetic algorithms</topic><topic>Probes</topic><topic>Testing</topic><topic>Traffic control</topic><toplevel>online_resources</toplevel><creatorcontrib>Oaks, R.D.</creatorcontrib><creatorcontrib>Paglione, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oaks, R.D.</au><au>Paglione, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Generation of realistic air traffic scenarios using a genetic algorithm</atitle><btitle>Proceedings. The 21st Digital Avionics Systems Conference</btitle><stitle>DASC</stitle><date>2002</date><risdate>2002</risdate><volume>1</volume><spage>2A1</spage><epage>2A1</epage><pages>2A1-2A1</pages><isbn>9780780373679</isbn><isbn>0780373677</isbn><abstract>Traffic flow management decision support tools such as the user request evaluation tool (URET), developed by the MITRE Center for Advanced Aviation Systems Development, and the Center-TRACON automation system (CTAS), developed by the NASA/Ames Research Center, use simulation as a tool for development, technical assessment, and field evaluation. Air traffic scenarios, based on recorded live data, are used to test these decision support tools. Frequently the scenarios need to be modified in order to create aircraft-to-aircraft encounters and conflicts that are not present in the live data. This paper presents an implementation of a genetic algorithm that is being used to time-shift the flights within an air traffic scenario to create encounters with specific constrained characteristics. These constraints are the distributions of the horizontal and vertical closest points of approach, the encounter angle at the closest point of horizontal approach, and the vertical type of encounter. This paper describes how the genetic algorithm was implemented, including a description of the solution chromosome and of the fitness function used to measure the potential solutions. After describing the implementation, a specific example of its use is presented.</abstract><pub>IEEE</pub><doi>10.1109/DASC.2002.1067908</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780373679
ispartof Proceedings. The 21st Digital Avionics Systems Conference, 2002, Vol.1, p.2A1-2A1
issn
language eng
recordid cdi_ieee_primary_1067908
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Air traffic control
Aircraft
Automation
Cities and towns
Current measurement
FAA
Genetic algorithms
Probes
Testing
Traffic control
title Generation of realistic air traffic scenarios using a genetic algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A23%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Generation%20of%20realistic%20air%20traffic%20scenarios%20using%20a%20genetic%20algorithm&rft.btitle=Proceedings.%20The%2021st%20Digital%20Avionics%20Systems%20Conference&rft.au=Oaks,%20R.D.&rft.date=2002&rft.volume=1&rft.spage=2A1&rft.epage=2A1&rft.pages=2A1-2A1&rft.isbn=9780780373679&rft.isbn_list=0780373677&rft_id=info:doi/10.1109/DASC.2002.1067908&rft_dat=%3Cieee_6IE%3E1067908%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1067908&rfr_iscdi=true