Interstitial Dual-Mode Ultrasound With a 3-mm MR-Compatible Catheter for Image-Guided HIFU and Directional In Vitro Tissue Ablations

Current interstitial techniques of tumor ablation face challenges that ultrasound (US) technologies could meet. The ablation radius and directionality of the US beam could improve the efficiency and precision. Here, a nine-gauge magnetic resonance (MR)-compatible dual-mode US catheter prototype was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2024-11, Vol.71 (11), p.1588-1605
Hauptverfasser: Biscaldi, Thomas, L'Huillier, Romain, Milot, Laurent, N'Djin, W. Apoutou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1605
container_issue 11
container_start_page 1588
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 71
creator Biscaldi, Thomas
L'Huillier, Romain
Milot, Laurent
N'Djin, W. Apoutou
description Current interstitial techniques of tumor ablation face challenges that ultrasound (US) technologies could meet. The ablation radius and directionality of the US beam could improve the efficiency and precision. Here, a nine-gauge magnetic resonance (MR)-compatible dual-mode US catheter prototype was experimentally evaluated for ultrasound image-guided high-intensity focused ultrasound (USgHIFU) conformal ablations. The prototype consisted of 64 piezocomposite linear-array elements and was driven by an open research programmable dual-mode US platform. After verifying the US image guidance capabilities of the prototype, the high-intensity focused US (HIFU) output performances (dynamic focusing and HIFU intensities) were quantitatively characterized, together with the associated 3-D HIFU-induced thermal heating in tissue phantoms [using MR thermometry (MRT)]. Finally, the ability to produce robustly HIFU-induced thermal ablations in in vitro liver was studied experimentally and compared to numerical modeling. Investigations of several HIFU dynamic focusing allowed overcoming the challenges of miniaturizing the device: monofocal focusing maximized deep energy deposition, while multifocal strategies eliminated grating lobes. The linear-array design of the prototype made it possible to produce interstitial US images of tissue and tumor mimics in situ. Multifocal pressure fields were generated without grating lobes and transducer surface intensities reached up to {I}_{\text {sapa}} = 14~\text {W}\cdot \text { cm}^{-{2}} . Seventeen elementary thermal ablations were performed in vitro. Rotation of the catheter proved the directionality of ablation, sparing nontargeted tissue. This experimental proof of concept demonstrates the feasibility of treating volumes comparable to those of primary solid tumors with a miniaturized USgHIFU catheter whose dimensions are close to those of tools traditionally used in interventional radiology while offering new functionalities.
doi_str_mv 10.1109/TUFFC.2024.3458067
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10677399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10677399</ieee_id><sourcerecordid>3133488473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1842-85608299363a81a4ee3c5fa31342719446bcc14a5bde4f6172bbf178e812d9f53</originalsourceid><addsrcrecordid>eNpdkU1v1DAURS1ERYfCH0AIWWLDxlN_JvaySpk2UqtKaAaWkZO8UFdJPNjOgj0_HA8zINTVW7xzr3R1EHrH6Joxai63u82mWnPK5VpIpWlRvkArprgi2ij1Eq2o1ooIyug5eh3jE6VMSsNfoXNhuDKF0Cv0q54ThJhccnbE14sdyb3vAe_GFGz0y9zjby49YosFmSZ8_4VUftrb5NoRcGXTI-Q4HnzA9WS_A7lZXA89vq03O2xz-NoF6JLzc26vZ_zVpeDx1sW4AL5qR3t4xTfobLBjhLene4F2m8_b6pbcPdzU1dUd6ZiWnGhVUM2NEYWwmlkJIDo1WMGE5CUzUhZt1zFpVduDHApW8rYdWKlBM96bQYkL9OnYuw_-xwIxNZOLHYyjncEvsRGMCikV1zKjH5-hT34JecWBEkJqLUuRKX6kuuBjDDA0--AmG342jDYHR80fR83BUXNylEMfTtVLO0H_L_JXSgbeHwEHAP81FmUp8vrfSNyUEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133488473</pqid></control><display><type>article</type><title>Interstitial Dual-Mode Ultrasound With a 3-mm MR-Compatible Catheter for Image-Guided HIFU and Directional In Vitro Tissue Ablations</title><source>IEEE Electronic Library (IEL)</source><creator>Biscaldi, Thomas ; L'Huillier, Romain ; Milot, Laurent ; N'Djin, W. Apoutou</creator><creatorcontrib>Biscaldi, Thomas ; L'Huillier, Romain ; Milot, Laurent ; N'Djin, W. Apoutou</creatorcontrib><description>Current interstitial techniques of tumor ablation face challenges that ultrasound (US) technologies could meet. The ablation radius and directionality of the US beam could improve the efficiency and precision. Here, a nine-gauge magnetic resonance (MR)-compatible dual-mode US catheter prototype was experimentally evaluated for ultrasound image-guided high-intensity focused ultrasound (USgHIFU) conformal ablations. The prototype consisted of 64 piezocomposite linear-array elements and was driven by an open research programmable dual-mode US platform. After verifying the US image guidance capabilities of the prototype, the high-intensity focused US (HIFU) output performances (dynamic focusing and HIFU intensities) were quantitatively characterized, together with the associated 3-D HIFU-induced thermal heating in tissue phantoms [using MR thermometry (MRT)]. Finally, the ability to produce robustly HIFU-induced thermal ablations in in vitro liver was studied experimentally and compared to numerical modeling. Investigations of several HIFU dynamic focusing allowed overcoming the challenges of miniaturizing the device: monofocal focusing maximized deep energy deposition, while multifocal strategies eliminated grating lobes. The linear-array design of the prototype made it possible to produce interstitial US images of tissue and tumor mimics in situ. Multifocal pressure fields were generated without grating lobes and transducer surface intensities reached up to &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{I}_{\text {sapa}} = 14~\text {W}\cdot \text { cm}^{-{2}} &lt;/tex-math&gt;&lt;/inline-formula&gt;. Seventeen elementary thermal ablations were performed in vitro. Rotation of the catheter proved the directionality of ablation, sparing nontargeted tissue. This experimental proof of concept demonstrates the feasibility of treating volumes comparable to those of primary solid tumors with a miniaturized USgHIFU catheter whose dimensions are close to those of tools traditionally used in interventional radiology while offering new functionalities.</description><identifier>ISSN: 0885-3010</identifier><identifier>ISSN: 1525-8955</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2024.3458067</identifier><identifier>PMID: 39259638</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Ablation ; Arrays ; Catheter ; Catheters ; conformal ; directional ablations ; dual mode ; Dynamic focusing ; Feasibility studies ; high-intensity focused US (HIFU) ; Imaging ; in vitro ; interstitial ; Lobes ; Magnetic resonance ; magnetic resonance (MR)-compatible ; Medical imaging ; Medical treatment ; multifocal ; nine-gauge ; Numerical models ; Prototypes ; therapies ; Transducers ; Tumors ; Ultrasonic imaging ; ultrasound (US)</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2024-11, Vol.71 (11), p.1588-1605</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1842-85608299363a81a4ee3c5fa31342719446bcc14a5bde4f6172bbf178e812d9f53</cites><orcidid>0000-0002-8079-2612 ; 0009-0004-9120-606X ; 0000-0003-0606-1464 ; 0000-0001-5175-3713</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10677399$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10677399$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39259638$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Biscaldi, Thomas</creatorcontrib><creatorcontrib>L'Huillier, Romain</creatorcontrib><creatorcontrib>Milot, Laurent</creatorcontrib><creatorcontrib>N'Djin, W. Apoutou</creatorcontrib><title>Interstitial Dual-Mode Ultrasound With a 3-mm MR-Compatible Catheter for Image-Guided HIFU and Directional In Vitro Tissue Ablations</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>Current interstitial techniques of tumor ablation face challenges that ultrasound (US) technologies could meet. The ablation radius and directionality of the US beam could improve the efficiency and precision. Here, a nine-gauge magnetic resonance (MR)-compatible dual-mode US catheter prototype was experimentally evaluated for ultrasound image-guided high-intensity focused ultrasound (USgHIFU) conformal ablations. The prototype consisted of 64 piezocomposite linear-array elements and was driven by an open research programmable dual-mode US platform. After verifying the US image guidance capabilities of the prototype, the high-intensity focused US (HIFU) output performances (dynamic focusing and HIFU intensities) were quantitatively characterized, together with the associated 3-D HIFU-induced thermal heating in tissue phantoms [using MR thermometry (MRT)]. Finally, the ability to produce robustly HIFU-induced thermal ablations in in vitro liver was studied experimentally and compared to numerical modeling. Investigations of several HIFU dynamic focusing allowed overcoming the challenges of miniaturizing the device: monofocal focusing maximized deep energy deposition, while multifocal strategies eliminated grating lobes. The linear-array design of the prototype made it possible to produce interstitial US images of tissue and tumor mimics in situ. Multifocal pressure fields were generated without grating lobes and transducer surface intensities reached up to &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{I}_{\text {sapa}} = 14~\text {W}\cdot \text { cm}^{-{2}} &lt;/tex-math&gt;&lt;/inline-formula&gt;. Seventeen elementary thermal ablations were performed in vitro. Rotation of the catheter proved the directionality of ablation, sparing nontargeted tissue. This experimental proof of concept demonstrates the feasibility of treating volumes comparable to those of primary solid tumors with a miniaturized USgHIFU catheter whose dimensions are close to those of tools traditionally used in interventional radiology while offering new functionalities.</description><subject>Ablation</subject><subject>Arrays</subject><subject>Catheter</subject><subject>Catheters</subject><subject>conformal</subject><subject>directional ablations</subject><subject>dual mode</subject><subject>Dynamic focusing</subject><subject>Feasibility studies</subject><subject>high-intensity focused US (HIFU)</subject><subject>Imaging</subject><subject>in vitro</subject><subject>interstitial</subject><subject>Lobes</subject><subject>Magnetic resonance</subject><subject>magnetic resonance (MR)-compatible</subject><subject>Medical imaging</subject><subject>Medical treatment</subject><subject>multifocal</subject><subject>nine-gauge</subject><subject>Numerical models</subject><subject>Prototypes</subject><subject>therapies</subject><subject>Transducers</subject><subject>Tumors</subject><subject>Ultrasonic imaging</subject><subject>ultrasound (US)</subject><issn>0885-3010</issn><issn>1525-8955</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1v1DAURS1ERYfCH0AIWWLDxlN_JvaySpk2UqtKaAaWkZO8UFdJPNjOgj0_HA8zINTVW7xzr3R1EHrH6Joxai63u82mWnPK5VpIpWlRvkArprgi2ij1Eq2o1ooIyug5eh3jE6VMSsNfoXNhuDKF0Cv0q54ThJhccnbE14sdyb3vAe_GFGz0y9zjby49YosFmSZ8_4VUftrb5NoRcGXTI-Q4HnzA9WS_A7lZXA89vq03O2xz-NoF6JLzc26vZ_zVpeDx1sW4AL5qR3t4xTfobLBjhLene4F2m8_b6pbcPdzU1dUd6ZiWnGhVUM2NEYWwmlkJIDo1WMGE5CUzUhZt1zFpVduDHApW8rYdWKlBM96bQYkL9OnYuw_-xwIxNZOLHYyjncEvsRGMCikV1zKjH5-hT34JecWBEkJqLUuRKX6kuuBjDDA0--AmG342jDYHR80fR83BUXNylEMfTtVLO0H_L_JXSgbeHwEHAP81FmUp8vrfSNyUEA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Biscaldi, Thomas</creator><creator>L'Huillier, Romain</creator><creator>Milot, Laurent</creator><creator>N'Djin, W. Apoutou</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8079-2612</orcidid><orcidid>https://orcid.org/0009-0004-9120-606X</orcidid><orcidid>https://orcid.org/0000-0003-0606-1464</orcidid><orcidid>https://orcid.org/0000-0001-5175-3713</orcidid></search><sort><creationdate>20241101</creationdate><title>Interstitial Dual-Mode Ultrasound With a 3-mm MR-Compatible Catheter for Image-Guided HIFU and Directional In Vitro Tissue Ablations</title><author>Biscaldi, Thomas ; L'Huillier, Romain ; Milot, Laurent ; N'Djin, W. Apoutou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1842-85608299363a81a4ee3c5fa31342719446bcc14a5bde4f6172bbf178e812d9f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Arrays</topic><topic>Catheter</topic><topic>Catheters</topic><topic>conformal</topic><topic>directional ablations</topic><topic>dual mode</topic><topic>Dynamic focusing</topic><topic>Feasibility studies</topic><topic>high-intensity focused US (HIFU)</topic><topic>Imaging</topic><topic>in vitro</topic><topic>interstitial</topic><topic>Lobes</topic><topic>Magnetic resonance</topic><topic>magnetic resonance (MR)-compatible</topic><topic>Medical imaging</topic><topic>Medical treatment</topic><topic>multifocal</topic><topic>nine-gauge</topic><topic>Numerical models</topic><topic>Prototypes</topic><topic>therapies</topic><topic>Transducers</topic><topic>Tumors</topic><topic>Ultrasonic imaging</topic><topic>ultrasound (US)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biscaldi, Thomas</creatorcontrib><creatorcontrib>L'Huillier, Romain</creatorcontrib><creatorcontrib>Milot, Laurent</creatorcontrib><creatorcontrib>N'Djin, W. Apoutou</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Biscaldi, Thomas</au><au>L'Huillier, Romain</au><au>Milot, Laurent</au><au>N'Djin, W. Apoutou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interstitial Dual-Mode Ultrasound With a 3-mm MR-Compatible Catheter for Image-Guided HIFU and Directional In Vitro Tissue Ablations</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>71</volume><issue>11</issue><spage>1588</spage><epage>1605</epage><pages>1588-1605</pages><issn>0885-3010</issn><issn>1525-8955</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>Current interstitial techniques of tumor ablation face challenges that ultrasound (US) technologies could meet. The ablation radius and directionality of the US beam could improve the efficiency and precision. Here, a nine-gauge magnetic resonance (MR)-compatible dual-mode US catheter prototype was experimentally evaluated for ultrasound image-guided high-intensity focused ultrasound (USgHIFU) conformal ablations. The prototype consisted of 64 piezocomposite linear-array elements and was driven by an open research programmable dual-mode US platform. After verifying the US image guidance capabilities of the prototype, the high-intensity focused US (HIFU) output performances (dynamic focusing and HIFU intensities) were quantitatively characterized, together with the associated 3-D HIFU-induced thermal heating in tissue phantoms [using MR thermometry (MRT)]. Finally, the ability to produce robustly HIFU-induced thermal ablations in in vitro liver was studied experimentally and compared to numerical modeling. Investigations of several HIFU dynamic focusing allowed overcoming the challenges of miniaturizing the device: monofocal focusing maximized deep energy deposition, while multifocal strategies eliminated grating lobes. The linear-array design of the prototype made it possible to produce interstitial US images of tissue and tumor mimics in situ. Multifocal pressure fields were generated without grating lobes and transducer surface intensities reached up to &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{I}_{\text {sapa}} = 14~\text {W}\cdot \text { cm}^{-{2}} &lt;/tex-math&gt;&lt;/inline-formula&gt;. Seventeen elementary thermal ablations were performed in vitro. Rotation of the catheter proved the directionality of ablation, sparing nontargeted tissue. This experimental proof of concept demonstrates the feasibility of treating volumes comparable to those of primary solid tumors with a miniaturized USgHIFU catheter whose dimensions are close to those of tools traditionally used in interventional radiology while offering new functionalities.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39259638</pmid><doi>10.1109/TUFFC.2024.3458067</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-8079-2612</orcidid><orcidid>https://orcid.org/0009-0004-9120-606X</orcidid><orcidid>https://orcid.org/0000-0003-0606-1464</orcidid><orcidid>https://orcid.org/0000-0001-5175-3713</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2024-11, Vol.71 (11), p.1588-1605
issn 0885-3010
1525-8955
1525-8955
language eng
recordid cdi_ieee_primary_10677399
source IEEE Electronic Library (IEL)
subjects Ablation
Arrays
Catheter
Catheters
conformal
directional ablations
dual mode
Dynamic focusing
Feasibility studies
high-intensity focused US (HIFU)
Imaging
in vitro
interstitial
Lobes
Magnetic resonance
magnetic resonance (MR)-compatible
Medical imaging
Medical treatment
multifocal
nine-gauge
Numerical models
Prototypes
therapies
Transducers
Tumors
Ultrasonic imaging
ultrasound (US)
title Interstitial Dual-Mode Ultrasound With a 3-mm MR-Compatible Catheter for Image-Guided HIFU and Directional In Vitro Tissue Ablations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T10%3A33%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interstitial%20Dual-Mode%20Ultrasound%20With%20a%203-mm%20MR-Compatible%20Catheter%20for%20Image-Guided%20HIFU%20and%20Directional%20In%20Vitro%20Tissue%20Ablations&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Biscaldi,%20Thomas&rft.date=2024-11-01&rft.volume=71&rft.issue=11&rft.spage=1588&rft.epage=1605&rft.pages=1588-1605&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2024.3458067&rft_dat=%3Cproquest_RIE%3E3133488473%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133488473&rft_id=info:pmid/39259638&rft_ieee_id=10677399&rfr_iscdi=true