Spatial Coherence Constraints on Passive Radar Sounding With Radio-Astronomical Sources

Recent work has highlighted the simulated performance of passive synthetic aperture radar (SAR) using Jupiter's radio emissions to probe the icy moons of Jupiter. Terrestrially, passive radar sounding using the Sun as a source for echo detection, ranging, imaging, and measuring ice thickness ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-12
Hauptverfasser: Peters, Sean T., Nessly, Karissa, Maximillian Roberts, T., Schroeder, Dustin M., Romero-Wolf, Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Peters, Sean T.
Nessly, Karissa
Maximillian Roberts, T.
Schroeder, Dustin M.
Romero-Wolf, Andrew
description Recent work has highlighted the simulated performance of passive synthetic aperture radar (SAR) using Jupiter's radio emissions to probe the icy moons of Jupiter. Terrestrially, passive radar sounding using the Sun as a source for echo detection, ranging, imaging, and measuring ice thickness has also been recently demonstrated for the first time. With increasing advancements in passive radar sounders that use extended, incoherent radio-astronomical sources for echo detection, we revisit a potential limitation of the technique in terms of the sources' spatial coherence properties. While previous work has considered the spatial coherence effects of extended sources for passive sounding in terms of pulse broadening, there has been little work to date that has examined the spatial coherence constraints for passive sounding imposed by source size, wavelength, incidence angle, and altitude-all of which govern the potential performance of passive SAR focusing. Starting from antenna theory, the Van Cittert-Zernike (VCZ) theorem, and the coherence function for passive sounding, we derive additional bounds set by these parameters and the expected source extent to estimate the maximum orbital altitudes when using radio-astronomical sources; in particular, we analyze the scenarios for a spacecraft using the Sun and Jovian bursts as sources for passive sounding of the Earth, Mars, and Europa. While the results of our analysis and simulations show that the coherence requirements (in terms of both pulse broadening and spatial radius of coherence) are met for terrestrial ground-based experiments up to large incidence angles, the limited spatial coherence at these greater altitudes creates an upper bound for orbital passive radar sounding. Our results therefore provide a richer understanding of the passive sounding technique, its viability, and a critical design constraint when planning future planetary and terrestrial passive sounding experiments.
doi_str_mv 10.1109/TGRS.2024.3456049
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10676327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10676327</ieee_id><sourcerecordid>3107263372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-ffcdaec56267439c2745685e8640b9519616711c327fd1913f4511a8082ad5b83</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWKsPIHhY8Lw1k2ySzbEUrUJBaSs9hjSbtSltUpOt4NubpT14mmH4ZubjR-ge8AgAy6fldL4YEUyqEa0Yx5W8QANgrC4xr6pLNMAgeUlqSa7RTUpbjKFiIAZotTjozuldMQkbG603Nnc-dVE736Ui-OJDp-R-bDHXjY7FIhx94_xXsXLdpp-5UI4zHnzYO5PvZCAam27RVat3yd6d6xB9vjwvJ6_l7H36NhnPSkNAdmXbmkZbwzjhoqLSEJHta2ZrXuG1ZFkauAAwlIi2AQm0zdqga1wT3bB1TYfo8XT3EMP30aZObbOAzy8VBSwIp1SQTMGJMjGkFG2rDtHtdfxVgFWfn-rzU31-6pxf3nk47Thr7T-eC55t6B-d4GtW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3107263372</pqid></control><display><type>article</type><title>Spatial Coherence Constraints on Passive Radar Sounding With Radio-Astronomical Sources</title><source>IEEE Electronic Library (IEL)</source><creator>Peters, Sean T. ; Nessly, Karissa ; Maximillian Roberts, T. ; Schroeder, Dustin M. ; Romero-Wolf, Andrew</creator><creatorcontrib>Peters, Sean T. ; Nessly, Karissa ; Maximillian Roberts, T. ; Schroeder, Dustin M. ; Romero-Wolf, Andrew</creatorcontrib><description>Recent work has highlighted the simulated performance of passive synthetic aperture radar (SAR) using Jupiter's radio emissions to probe the icy moons of Jupiter. Terrestrially, passive radar sounding using the Sun as a source for echo detection, ranging, imaging, and measuring ice thickness has also been recently demonstrated for the first time. With increasing advancements in passive radar sounders that use extended, incoherent radio-astronomical sources for echo detection, we revisit a potential limitation of the technique in terms of the sources' spatial coherence properties. While previous work has considered the spatial coherence effects of extended sources for passive sounding in terms of pulse broadening, there has been little work to date that has examined the spatial coherence constraints for passive sounding imposed by source size, wavelength, incidence angle, and altitude-all of which govern the potential performance of passive SAR focusing. Starting from antenna theory, the Van Cittert-Zernike (VCZ) theorem, and the coherence function for passive sounding, we derive additional bounds set by these parameters and the expected source extent to estimate the maximum orbital altitudes when using radio-astronomical sources; in particular, we analyze the scenarios for a spacecraft using the Sun and Jovian bursts as sources for passive sounding of the Earth, Mars, and Europa. While the results of our analysis and simulations show that the coherence requirements (in terms of both pulse broadening and spatial radius of coherence) are met for terrestrial ground-based experiments up to large incidence angles, the limited spatial coherence at these greater altitudes creates an upper bound for orbital passive radar sounding. Our results therefore provide a richer understanding of the passive sounding technique, its viability, and a critical design constraint when planning future planetary and terrestrial passive sounding experiments.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3456049</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Altitude ; Antenna theory ; Coherence ; Constraints ; Echo sounding ; Ice cover ; Ice thickness ; Icy satellites ; Incidence angle ; Jupiter ; Jupiter satellites ; Parameter estimation ; Passive radar ; passive radio sounding ; Planetary orbits ; pulse broadening ; Radar ; Radar detection ; Radar imaging ; Radio ; Radio emission ; Radio sources (astronomy) ; radio-astronomical sources ; SAR (radar) ; Sounding ; Spacecraft ; Spatial coherence ; Sun ; Synthetic aperture radar ; Thickness measurement ; Upper bounds ; Wavelength</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-ffcdaec56267439c2745685e8640b9519616711c327fd1913f4511a8082ad5b83</cites><orcidid>0000-0003-1916-3929 ; 0000-0003-2527-8271 ; 0000-0002-4992-4162 ; 0000-0003-1964-7683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10676327$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,798,4028,27932,27933,27934,54767</link.rule.ids></links><search><creatorcontrib>Peters, Sean T.</creatorcontrib><creatorcontrib>Nessly, Karissa</creatorcontrib><creatorcontrib>Maximillian Roberts, T.</creatorcontrib><creatorcontrib>Schroeder, Dustin M.</creatorcontrib><creatorcontrib>Romero-Wolf, Andrew</creatorcontrib><title>Spatial Coherence Constraints on Passive Radar Sounding With Radio-Astronomical Sources</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Recent work has highlighted the simulated performance of passive synthetic aperture radar (SAR) using Jupiter's radio emissions to probe the icy moons of Jupiter. Terrestrially, passive radar sounding using the Sun as a source for echo detection, ranging, imaging, and measuring ice thickness has also been recently demonstrated for the first time. With increasing advancements in passive radar sounders that use extended, incoherent radio-astronomical sources for echo detection, we revisit a potential limitation of the technique in terms of the sources' spatial coherence properties. While previous work has considered the spatial coherence effects of extended sources for passive sounding in terms of pulse broadening, there has been little work to date that has examined the spatial coherence constraints for passive sounding imposed by source size, wavelength, incidence angle, and altitude-all of which govern the potential performance of passive SAR focusing. Starting from antenna theory, the Van Cittert-Zernike (VCZ) theorem, and the coherence function for passive sounding, we derive additional bounds set by these parameters and the expected source extent to estimate the maximum orbital altitudes when using radio-astronomical sources; in particular, we analyze the scenarios for a spacecraft using the Sun and Jovian bursts as sources for passive sounding of the Earth, Mars, and Europa. While the results of our analysis and simulations show that the coherence requirements (in terms of both pulse broadening and spatial radius of coherence) are met for terrestrial ground-based experiments up to large incidence angles, the limited spatial coherence at these greater altitudes creates an upper bound for orbital passive radar sounding. Our results therefore provide a richer understanding of the passive sounding technique, its viability, and a critical design constraint when planning future planetary and terrestrial passive sounding experiments.</description><subject>Altitude</subject><subject>Antenna theory</subject><subject>Coherence</subject><subject>Constraints</subject><subject>Echo sounding</subject><subject>Ice cover</subject><subject>Ice thickness</subject><subject>Icy satellites</subject><subject>Incidence angle</subject><subject>Jupiter</subject><subject>Jupiter satellites</subject><subject>Parameter estimation</subject><subject>Passive radar</subject><subject>passive radio sounding</subject><subject>Planetary orbits</subject><subject>pulse broadening</subject><subject>Radar</subject><subject>Radar detection</subject><subject>Radar imaging</subject><subject>Radio</subject><subject>Radio emission</subject><subject>Radio sources (astronomy)</subject><subject>radio-astronomical sources</subject><subject>SAR (radar)</subject><subject>Sounding</subject><subject>Spacecraft</subject><subject>Spatial coherence</subject><subject>Sun</subject><subject>Synthetic aperture radar</subject><subject>Thickness measurement</subject><subject>Upper bounds</subject><subject>Wavelength</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkMFKAzEQhoMoWKsPIHhY8Lw1k2ySzbEUrUJBaSs9hjSbtSltUpOt4NubpT14mmH4ZubjR-ge8AgAy6fldL4YEUyqEa0Yx5W8QANgrC4xr6pLNMAgeUlqSa7RTUpbjKFiIAZotTjozuldMQkbG603Nnc-dVE736Ui-OJDp-R-bDHXjY7FIhx94_xXsXLdpp-5UI4zHnzYO5PvZCAam27RVat3yd6d6xB9vjwvJ6_l7H36NhnPSkNAdmXbmkZbwzjhoqLSEJHta2ZrXuG1ZFkauAAwlIi2AQm0zdqga1wT3bB1TYfo8XT3EMP30aZObbOAzy8VBSwIp1SQTMGJMjGkFG2rDtHtdfxVgFWfn-rzU31-6pxf3nk47Thr7T-eC55t6B-d4GtW</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Peters, Sean T.</creator><creator>Nessly, Karissa</creator><creator>Maximillian Roberts, T.</creator><creator>Schroeder, Dustin M.</creator><creator>Romero-Wolf, Andrew</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1916-3929</orcidid><orcidid>https://orcid.org/0000-0003-2527-8271</orcidid><orcidid>https://orcid.org/0000-0002-4992-4162</orcidid><orcidid>https://orcid.org/0000-0003-1964-7683</orcidid></search><sort><creationdate>2024</creationdate><title>Spatial Coherence Constraints on Passive Radar Sounding With Radio-Astronomical Sources</title><author>Peters, Sean T. ; Nessly, Karissa ; Maximillian Roberts, T. ; Schroeder, Dustin M. ; Romero-Wolf, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-ffcdaec56267439c2745685e8640b9519616711c327fd1913f4511a8082ad5b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Altitude</topic><topic>Antenna theory</topic><topic>Coherence</topic><topic>Constraints</topic><topic>Echo sounding</topic><topic>Ice cover</topic><topic>Ice thickness</topic><topic>Icy satellites</topic><topic>Incidence angle</topic><topic>Jupiter</topic><topic>Jupiter satellites</topic><topic>Parameter estimation</topic><topic>Passive radar</topic><topic>passive radio sounding</topic><topic>Planetary orbits</topic><topic>pulse broadening</topic><topic>Radar</topic><topic>Radar detection</topic><topic>Radar imaging</topic><topic>Radio</topic><topic>Radio emission</topic><topic>Radio sources (astronomy)</topic><topic>radio-astronomical sources</topic><topic>SAR (radar)</topic><topic>Sounding</topic><topic>Spacecraft</topic><topic>Spatial coherence</topic><topic>Sun</topic><topic>Synthetic aperture radar</topic><topic>Thickness measurement</topic><topic>Upper bounds</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peters, Sean T.</creatorcontrib><creatorcontrib>Nessly, Karissa</creatorcontrib><creatorcontrib>Maximillian Roberts, T.</creatorcontrib><creatorcontrib>Schroeder, Dustin M.</creatorcontrib><creatorcontrib>Romero-Wolf, Andrew</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peters, Sean T.</au><au>Nessly, Karissa</au><au>Maximillian Roberts, T.</au><au>Schroeder, Dustin M.</au><au>Romero-Wolf, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Coherence Constraints on Passive Radar Sounding With Radio-Astronomical Sources</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Recent work has highlighted the simulated performance of passive synthetic aperture radar (SAR) using Jupiter's radio emissions to probe the icy moons of Jupiter. Terrestrially, passive radar sounding using the Sun as a source for echo detection, ranging, imaging, and measuring ice thickness has also been recently demonstrated for the first time. With increasing advancements in passive radar sounders that use extended, incoherent radio-astronomical sources for echo detection, we revisit a potential limitation of the technique in terms of the sources' spatial coherence properties. While previous work has considered the spatial coherence effects of extended sources for passive sounding in terms of pulse broadening, there has been little work to date that has examined the spatial coherence constraints for passive sounding imposed by source size, wavelength, incidence angle, and altitude-all of which govern the potential performance of passive SAR focusing. Starting from antenna theory, the Van Cittert-Zernike (VCZ) theorem, and the coherence function for passive sounding, we derive additional bounds set by these parameters and the expected source extent to estimate the maximum orbital altitudes when using radio-astronomical sources; in particular, we analyze the scenarios for a spacecraft using the Sun and Jovian bursts as sources for passive sounding of the Earth, Mars, and Europa. While the results of our analysis and simulations show that the coherence requirements (in terms of both pulse broadening and spatial radius of coherence) are met for terrestrial ground-based experiments up to large incidence angles, the limited spatial coherence at these greater altitudes creates an upper bound for orbital passive radar sounding. Our results therefore provide a richer understanding of the passive sounding technique, its viability, and a critical design constraint when planning future planetary and terrestrial passive sounding experiments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3456049</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1916-3929</orcidid><orcidid>https://orcid.org/0000-0003-2527-8271</orcidid><orcidid>https://orcid.org/0000-0002-4992-4162</orcidid><orcidid>https://orcid.org/0000-0003-1964-7683</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-12
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_10676327
source IEEE Electronic Library (IEL)
subjects Altitude
Antenna theory
Coherence
Constraints
Echo sounding
Ice cover
Ice thickness
Icy satellites
Incidence angle
Jupiter
Jupiter satellites
Parameter estimation
Passive radar
passive radio sounding
Planetary orbits
pulse broadening
Radar
Radar detection
Radar imaging
Radio
Radio emission
Radio sources (astronomy)
radio-astronomical sources
SAR (radar)
Sounding
Spacecraft
Spatial coherence
Sun
Synthetic aperture radar
Thickness measurement
Upper bounds
Wavelength
title Spatial Coherence Constraints on Passive Radar Sounding With Radio-Astronomical Sources
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T11%3A20%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Coherence%20Constraints%20on%20Passive%20Radar%20Sounding%20With%20Radio-Astronomical%20Sources&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Peters,%20Sean%20T.&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3456049&rft_dat=%3Cproquest_ieee_%3E3107263372%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3107263372&rft_id=info:pmid/&rft_ieee_id=10676327&rfr_iscdi=true