Enhancing Bluetooth Channel Sounding Performance in Complex Indoor Environments
The Internet of Things (IoT) relies on accurate distance estimation between devices, crucial for localization in various applications. While received signal strength indicator (RSSI)-based ranging lacks precision and time-of-flight narrow band systems perform poorly, phase-based ranging emerges as t...
Gespeichert in:
Veröffentlicht in: | IEEE sensors letters 2024-10, Vol.8 (10), p.1-4 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | 10 |
container_start_page | 1 |
container_title | IEEE sensors letters |
container_volume | 8 |
creator | Santra, Avik Kravets, Igor Kotliar, Nazarii Pandey, Ashutosh |
description | The Internet of Things (IoT) relies on accurate distance estimation between devices, crucial for localization in various applications. While received signal strength indicator (RSSI)-based ranging lacks precision and time-of-flight narrow band systems perform poorly, phase-based ranging emerges as the preferred choice for Bluetooth Low Energy (BLE). Infineon's BLE prototype and its performance with a novel processing pipeline based on the minimum variance distortionless response (MVDR) algorithm are presented in this letter. Our pipeline comprises subalgorithms for preprocessing, scene identification, feature selection, feature engineering, and postprocessing. Preprocessing includes zero distance calibration, low-pass filtering, and time history averaging. Scene identification adapts parameters to environmental conditions. MVDR algorithms enable high-resolution feature transformation to project the residual phase correction term to the range domain. Postprocessing includes a tracker and data-dependent adaptation. Postprocessing in conjunction with feature selection tracks the line of sight path, minimizing distance jitter. Our proposed pipeline achieves a \text{90}{\%} peak error of \leq\text{1.6} \,\text{m} without data-dependent adaptation and \leq\text{1.2} \,\text{m} with data-dependent adaptation and tracking, outperforming existing methods in the literature. This work demonstrates the potential of Infineon's BLE channel sounding for accurate range estimation in IoT applications. |
doi_str_mv | 10.1109/LSENS.2024.3456002 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10669801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10669801</ieee_id><sourcerecordid>10_1109_LSENS_2024_3456002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c149t-4185463fea98c72f5abafa8657ec29d7baab55d5bfd7913f0cd30bf6177f8ca13</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EElXpDyAW_oGU8StOlhAFqFRRpMI6cpwxDUrsykkR_D0t7aKruZqZcxeHkFsGc8Ygv1-uy9f1nAOXcyFVCsAvyIRLrRImNb88y9dkNgxfAMAyrkHAhKxKvzHetv6TPnY7HEMYN7TYrzx2dB12vjmc3jC6EPv9I9LW0yL02w5_6MI3IURa-u82Bt-jH4cbcuVMN-DsNKfk46l8L16S5ep5UTwsE8tkPiaSZUqmwqHJM6u5U6Y2zmSp0mh53ujamFqpRtWu0TkTDmwjoHYp09pl1jAxJfzYa2MYhoiu2sa2N_G3YlAdrFT_VqqDlepkZQ_dHaEWEc-ANM0zYOIPQwRgCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhancing Bluetooth Channel Sounding Performance in Complex Indoor Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Santra, Avik ; Kravets, Igor ; Kotliar, Nazarii ; Pandey, Ashutosh</creator><creatorcontrib>Santra, Avik ; Kravets, Igor ; Kotliar, Nazarii ; Pandey, Ashutosh</creatorcontrib><description><![CDATA[The Internet of Things (IoT) relies on accurate distance estimation between devices, crucial for localization in various applications. While received signal strength indicator (RSSI)-based ranging lacks precision and time-of-flight narrow band systems perform poorly, phase-based ranging emerges as the preferred choice for Bluetooth Low Energy (BLE). Infineon's BLE prototype and its performance with a novel processing pipeline based on the minimum variance distortionless response (MVDR) algorithm are presented in this letter. Our pipeline comprises subalgorithms for preprocessing, scene identification, feature selection, feature engineering, and postprocessing. Preprocessing includes zero distance calibration, low-pass filtering, and time history averaging. Scene identification adapts parameters to environmental conditions. MVDR algorithms enable high-resolution feature transformation to project the residual phase correction term to the range domain. Postprocessing includes a tracker and data-dependent adaptation. Postprocessing in conjunction with feature selection tracks the line of sight path, minimizing distance jitter. Our proposed pipeline achieves a <inline-formula><tex-math notation="LaTeX">\text{90}{\%}</tex-math></inline-formula> peak error of <inline-formula><tex-math notation="LaTeX">\leq</tex-math></inline-formula><inline-formula><tex-math notation="LaTeX">\text{1.6} \,\text{m}</tex-math></inline-formula> without data-dependent adaptation and <inline-formula><tex-math notation="LaTeX">\leq</tex-math></inline-formula><inline-formula><tex-math notation="LaTeX">\text{1.2} \,\text{m}</tex-math></inline-formula> with data-dependent adaptation and tracking, outperforming existing methods in the literature. This work demonstrates the potential of Infineon's BLE channel sounding for accurate range estimation in IoT applications.]]></description><identifier>ISSN: 2475-1472</identifier><identifier>EISSN: 2475-1472</identifier><identifier>DOI: 10.1109/LSENS.2024.3456002</identifier><identifier>CODEN: ISLECD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Bluetooth channel sounding (CS) ; Channel estimation ; Distance measurement ; Estimation ; home automation ; Indoor environment ; indoor localization ; Phase measurement ; Pipelines ; range estimation ; Sensor signal processing ; smart lock ; super-resolution</subject><ispartof>IEEE sensors letters, 2024-10, Vol.8 (10), p.1-4</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c149t-4185463fea98c72f5abafa8657ec29d7baab55d5bfd7913f0cd30bf6177f8ca13</cites><orcidid>0000-0002-8156-3387 ; 0009-0003-1500-2674 ; 0009-0006-4693-6578 ; 0009-0006-6156-2471</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10669801$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10669801$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Santra, Avik</creatorcontrib><creatorcontrib>Kravets, Igor</creatorcontrib><creatorcontrib>Kotliar, Nazarii</creatorcontrib><creatorcontrib>Pandey, Ashutosh</creatorcontrib><title>Enhancing Bluetooth Channel Sounding Performance in Complex Indoor Environments</title><title>IEEE sensors letters</title><addtitle>LSENS</addtitle><description><![CDATA[The Internet of Things (IoT) relies on accurate distance estimation between devices, crucial for localization in various applications. While received signal strength indicator (RSSI)-based ranging lacks precision and time-of-flight narrow band systems perform poorly, phase-based ranging emerges as the preferred choice for Bluetooth Low Energy (BLE). Infineon's BLE prototype and its performance with a novel processing pipeline based on the minimum variance distortionless response (MVDR) algorithm are presented in this letter. Our pipeline comprises subalgorithms for preprocessing, scene identification, feature selection, feature engineering, and postprocessing. Preprocessing includes zero distance calibration, low-pass filtering, and time history averaging. Scene identification adapts parameters to environmental conditions. MVDR algorithms enable high-resolution feature transformation to project the residual phase correction term to the range domain. Postprocessing includes a tracker and data-dependent adaptation. Postprocessing in conjunction with feature selection tracks the line of sight path, minimizing distance jitter. Our proposed pipeline achieves a <inline-formula><tex-math notation="LaTeX">\text{90}{\%}</tex-math></inline-formula> peak error of <inline-formula><tex-math notation="LaTeX">\leq</tex-math></inline-formula><inline-formula><tex-math notation="LaTeX">\text{1.6} \,\text{m}</tex-math></inline-formula> without data-dependent adaptation and <inline-formula><tex-math notation="LaTeX">\leq</tex-math></inline-formula><inline-formula><tex-math notation="LaTeX">\text{1.2} \,\text{m}</tex-math></inline-formula> with data-dependent adaptation and tracking, outperforming existing methods in the literature. This work demonstrates the potential of Infineon's BLE channel sounding for accurate range estimation in IoT applications.]]></description><subject>Accuracy</subject><subject>Bluetooth channel sounding (CS)</subject><subject>Channel estimation</subject><subject>Distance measurement</subject><subject>Estimation</subject><subject>home automation</subject><subject>Indoor environment</subject><subject>indoor localization</subject><subject>Phase measurement</subject><subject>Pipelines</subject><subject>range estimation</subject><subject>Sensor signal processing</subject><subject>smart lock</subject><subject>super-resolution</subject><issn>2475-1472</issn><issn>2475-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EElXpDyAW_oGU8StOlhAFqFRRpMI6cpwxDUrsykkR_D0t7aKruZqZcxeHkFsGc8Ygv1-uy9f1nAOXcyFVCsAvyIRLrRImNb88y9dkNgxfAMAyrkHAhKxKvzHetv6TPnY7HEMYN7TYrzx2dB12vjmc3jC6EPv9I9LW0yL02w5_6MI3IURa-u82Bt-jH4cbcuVMN-DsNKfk46l8L16S5ep5UTwsE8tkPiaSZUqmwqHJM6u5U6Y2zmSp0mh53ujamFqpRtWu0TkTDmwjoHYp09pl1jAxJfzYa2MYhoiu2sa2N_G3YlAdrFT_VqqDlepkZQ_dHaEWEc-ANM0zYOIPQwRgCQ</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Santra, Avik</creator><creator>Kravets, Igor</creator><creator>Kotliar, Nazarii</creator><creator>Pandey, Ashutosh</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8156-3387</orcidid><orcidid>https://orcid.org/0009-0003-1500-2674</orcidid><orcidid>https://orcid.org/0009-0006-4693-6578</orcidid><orcidid>https://orcid.org/0009-0006-6156-2471</orcidid></search><sort><creationdate>202410</creationdate><title>Enhancing Bluetooth Channel Sounding Performance in Complex Indoor Environments</title><author>Santra, Avik ; Kravets, Igor ; Kotliar, Nazarii ; Pandey, Ashutosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c149t-4185463fea98c72f5abafa8657ec29d7baab55d5bfd7913f0cd30bf6177f8ca13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Bluetooth channel sounding (CS)</topic><topic>Channel estimation</topic><topic>Distance measurement</topic><topic>Estimation</topic><topic>home automation</topic><topic>Indoor environment</topic><topic>indoor localization</topic><topic>Phase measurement</topic><topic>Pipelines</topic><topic>range estimation</topic><topic>Sensor signal processing</topic><topic>smart lock</topic><topic>super-resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santra, Avik</creatorcontrib><creatorcontrib>Kravets, Igor</creatorcontrib><creatorcontrib>Kotliar, Nazarii</creatorcontrib><creatorcontrib>Pandey, Ashutosh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE sensors letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Santra, Avik</au><au>Kravets, Igor</au><au>Kotliar, Nazarii</au><au>Pandey, Ashutosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Bluetooth Channel Sounding Performance in Complex Indoor Environments</atitle><jtitle>IEEE sensors letters</jtitle><stitle>LSENS</stitle><date>2024-10</date><risdate>2024</risdate><volume>8</volume><issue>10</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2475-1472</issn><eissn>2475-1472</eissn><coden>ISLECD</coden><abstract><![CDATA[The Internet of Things (IoT) relies on accurate distance estimation between devices, crucial for localization in various applications. While received signal strength indicator (RSSI)-based ranging lacks precision and time-of-flight narrow band systems perform poorly, phase-based ranging emerges as the preferred choice for Bluetooth Low Energy (BLE). Infineon's BLE prototype and its performance with a novel processing pipeline based on the minimum variance distortionless response (MVDR) algorithm are presented in this letter. Our pipeline comprises subalgorithms for preprocessing, scene identification, feature selection, feature engineering, and postprocessing. Preprocessing includes zero distance calibration, low-pass filtering, and time history averaging. Scene identification adapts parameters to environmental conditions. MVDR algorithms enable high-resolution feature transformation to project the residual phase correction term to the range domain. Postprocessing includes a tracker and data-dependent adaptation. Postprocessing in conjunction with feature selection tracks the line of sight path, minimizing distance jitter. Our proposed pipeline achieves a <inline-formula><tex-math notation="LaTeX">\text{90}{\%}</tex-math></inline-formula> peak error of <inline-formula><tex-math notation="LaTeX">\leq</tex-math></inline-formula><inline-formula><tex-math notation="LaTeX">\text{1.6} \,\text{m}</tex-math></inline-formula> without data-dependent adaptation and <inline-formula><tex-math notation="LaTeX">\leq</tex-math></inline-formula><inline-formula><tex-math notation="LaTeX">\text{1.2} \,\text{m}</tex-math></inline-formula> with data-dependent adaptation and tracking, outperforming existing methods in the literature. This work demonstrates the potential of Infineon's BLE channel sounding for accurate range estimation in IoT applications.]]></abstract><pub>IEEE</pub><doi>10.1109/LSENS.2024.3456002</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8156-3387</orcidid><orcidid>https://orcid.org/0009-0003-1500-2674</orcidid><orcidid>https://orcid.org/0009-0006-4693-6578</orcidid><orcidid>https://orcid.org/0009-0006-6156-2471</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2475-1472 |
ispartof | IEEE sensors letters, 2024-10, Vol.8 (10), p.1-4 |
issn | 2475-1472 2475-1472 |
language | eng |
recordid | cdi_ieee_primary_10669801 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Bluetooth channel sounding (CS) Channel estimation Distance measurement Estimation home automation Indoor environment indoor localization Phase measurement Pipelines range estimation Sensor signal processing smart lock super-resolution |
title | Enhancing Bluetooth Channel Sounding Performance in Complex Indoor Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Bluetooth%20Channel%20Sounding%20Performance%20in%20Complex%20Indoor%20Environments&rft.jtitle=IEEE%20sensors%20letters&rft.au=Santra,%20Avik&rft.date=2024-10&rft.volume=8&rft.issue=10&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2475-1472&rft.eissn=2475-1472&rft.coden=ISLECD&rft_id=info:doi/10.1109/LSENS.2024.3456002&rft_dat=%3Ccrossref_RIE%3E10_1109_LSENS_2024_3456002%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10669801&rfr_iscdi=true |