Enhancing Bluetooth Channel Sounding Performance in Complex Indoor Environments

The Internet of Things (IoT) relies on accurate distance estimation between devices, crucial for localization in various applications. While received signal strength indicator (RSSI)-based ranging lacks precision and time-of-flight narrow band systems perform poorly, phase-based ranging emerges as t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors letters 2024-10, Vol.8 (10), p.1-4
Hauptverfasser: Santra, Avik, Kravets, Igor, Kotliar, Nazarii, Pandey, Ashutosh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue 10
container_start_page 1
container_title IEEE sensors letters
container_volume 8
creator Santra, Avik
Kravets, Igor
Kotliar, Nazarii
Pandey, Ashutosh
description The Internet of Things (IoT) relies on accurate distance estimation between devices, crucial for localization in various applications. While received signal strength indicator (RSSI)-based ranging lacks precision and time-of-flight narrow band systems perform poorly, phase-based ranging emerges as the preferred choice for Bluetooth Low Energy (BLE). Infineon's BLE prototype and its performance with a novel processing pipeline based on the minimum variance distortionless response (MVDR) algorithm are presented in this letter. Our pipeline comprises subalgorithms for preprocessing, scene identification, feature selection, feature engineering, and postprocessing. Preprocessing includes zero distance calibration, low-pass filtering, and time history averaging. Scene identification adapts parameters to environmental conditions. MVDR algorithms enable high-resolution feature transformation to project the residual phase correction term to the range domain. Postprocessing includes a tracker and data-dependent adaptation. Postprocessing in conjunction with feature selection tracks the line of sight path, minimizing distance jitter. Our proposed pipeline achieves a \text{90}{\%} peak error of \leq\text{1.6} \,\text{m} without data-dependent adaptation and \leq\text{1.2} \,\text{m} with data-dependent adaptation and tracking, outperforming existing methods in the literature. This work demonstrates the potential of Infineon's BLE channel sounding for accurate range estimation in IoT applications.
doi_str_mv 10.1109/LSENS.2024.3456002
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10669801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10669801</ieee_id><sourcerecordid>10_1109_LSENS_2024_3456002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c149t-4185463fea98c72f5abafa8657ec29d7baab55d5bfd7913f0cd30bf6177f8ca13</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EElXpDyAW_oGU8StOlhAFqFRRpMI6cpwxDUrsykkR_D0t7aKruZqZcxeHkFsGc8Ygv1-uy9f1nAOXcyFVCsAvyIRLrRImNb88y9dkNgxfAMAyrkHAhKxKvzHetv6TPnY7HEMYN7TYrzx2dB12vjmc3jC6EPv9I9LW0yL02w5_6MI3IURa-u82Bt-jH4cbcuVMN-DsNKfk46l8L16S5ep5UTwsE8tkPiaSZUqmwqHJM6u5U6Y2zmSp0mh53ujamFqpRtWu0TkTDmwjoHYp09pl1jAxJfzYa2MYhoiu2sa2N_G3YlAdrFT_VqqDlepkZQ_dHaEWEc-ANM0zYOIPQwRgCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhancing Bluetooth Channel Sounding Performance in Complex Indoor Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Santra, Avik ; Kravets, Igor ; Kotliar, Nazarii ; Pandey, Ashutosh</creator><creatorcontrib>Santra, Avik ; Kravets, Igor ; Kotliar, Nazarii ; Pandey, Ashutosh</creatorcontrib><description><![CDATA[The Internet of Things (IoT) relies on accurate distance estimation between devices, crucial for localization in various applications. While received signal strength indicator (RSSI)-based ranging lacks precision and time-of-flight narrow band systems perform poorly, phase-based ranging emerges as the preferred choice for Bluetooth Low Energy (BLE). Infineon's BLE prototype and its performance with a novel processing pipeline based on the minimum variance distortionless response (MVDR) algorithm are presented in this letter. Our pipeline comprises subalgorithms for preprocessing, scene identification, feature selection, feature engineering, and postprocessing. Preprocessing includes zero distance calibration, low-pass filtering, and time history averaging. Scene identification adapts parameters to environmental conditions. MVDR algorithms enable high-resolution feature transformation to project the residual phase correction term to the range domain. Postprocessing includes a tracker and data-dependent adaptation. Postprocessing in conjunction with feature selection tracks the line of sight path, minimizing distance jitter. Our proposed pipeline achieves a <inline-formula><tex-math notation="LaTeX">\text{90}{\%}</tex-math></inline-formula> peak error of <inline-formula><tex-math notation="LaTeX">\leq</tex-math></inline-formula><inline-formula><tex-math notation="LaTeX">\text{1.6} \,\text{m}</tex-math></inline-formula> without data-dependent adaptation and <inline-formula><tex-math notation="LaTeX">\leq</tex-math></inline-formula><inline-formula><tex-math notation="LaTeX">\text{1.2} \,\text{m}</tex-math></inline-formula> with data-dependent adaptation and tracking, outperforming existing methods in the literature. This work demonstrates the potential of Infineon's BLE channel sounding for accurate range estimation in IoT applications.]]></description><identifier>ISSN: 2475-1472</identifier><identifier>EISSN: 2475-1472</identifier><identifier>DOI: 10.1109/LSENS.2024.3456002</identifier><identifier>CODEN: ISLECD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Bluetooth channel sounding (CS) ; Channel estimation ; Distance measurement ; Estimation ; home automation ; Indoor environment ; indoor localization ; Phase measurement ; Pipelines ; range estimation ; Sensor signal processing ; smart lock ; super-resolution</subject><ispartof>IEEE sensors letters, 2024-10, Vol.8 (10), p.1-4</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c149t-4185463fea98c72f5abafa8657ec29d7baab55d5bfd7913f0cd30bf6177f8ca13</cites><orcidid>0000-0002-8156-3387 ; 0009-0003-1500-2674 ; 0009-0006-4693-6578 ; 0009-0006-6156-2471</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10669801$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10669801$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Santra, Avik</creatorcontrib><creatorcontrib>Kravets, Igor</creatorcontrib><creatorcontrib>Kotliar, Nazarii</creatorcontrib><creatorcontrib>Pandey, Ashutosh</creatorcontrib><title>Enhancing Bluetooth Channel Sounding Performance in Complex Indoor Environments</title><title>IEEE sensors letters</title><addtitle>LSENS</addtitle><description><![CDATA[The Internet of Things (IoT) relies on accurate distance estimation between devices, crucial for localization in various applications. While received signal strength indicator (RSSI)-based ranging lacks precision and time-of-flight narrow band systems perform poorly, phase-based ranging emerges as the preferred choice for Bluetooth Low Energy (BLE). Infineon's BLE prototype and its performance with a novel processing pipeline based on the minimum variance distortionless response (MVDR) algorithm are presented in this letter. Our pipeline comprises subalgorithms for preprocessing, scene identification, feature selection, feature engineering, and postprocessing. Preprocessing includes zero distance calibration, low-pass filtering, and time history averaging. Scene identification adapts parameters to environmental conditions. MVDR algorithms enable high-resolution feature transformation to project the residual phase correction term to the range domain. Postprocessing includes a tracker and data-dependent adaptation. Postprocessing in conjunction with feature selection tracks the line of sight path, minimizing distance jitter. Our proposed pipeline achieves a <inline-formula><tex-math notation="LaTeX">\text{90}{\%}</tex-math></inline-formula> peak error of <inline-formula><tex-math notation="LaTeX">\leq</tex-math></inline-formula><inline-formula><tex-math notation="LaTeX">\text{1.6} \,\text{m}</tex-math></inline-formula> without data-dependent adaptation and <inline-formula><tex-math notation="LaTeX">\leq</tex-math></inline-formula><inline-formula><tex-math notation="LaTeX">\text{1.2} \,\text{m}</tex-math></inline-formula> with data-dependent adaptation and tracking, outperforming existing methods in the literature. This work demonstrates the potential of Infineon's BLE channel sounding for accurate range estimation in IoT applications.]]></description><subject>Accuracy</subject><subject>Bluetooth channel sounding (CS)</subject><subject>Channel estimation</subject><subject>Distance measurement</subject><subject>Estimation</subject><subject>home automation</subject><subject>Indoor environment</subject><subject>indoor localization</subject><subject>Phase measurement</subject><subject>Pipelines</subject><subject>range estimation</subject><subject>Sensor signal processing</subject><subject>smart lock</subject><subject>super-resolution</subject><issn>2475-1472</issn><issn>2475-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EElXpDyAW_oGU8StOlhAFqFRRpMI6cpwxDUrsykkR_D0t7aKruZqZcxeHkFsGc8Ygv1-uy9f1nAOXcyFVCsAvyIRLrRImNb88y9dkNgxfAMAyrkHAhKxKvzHetv6TPnY7HEMYN7TYrzx2dB12vjmc3jC6EPv9I9LW0yL02w5_6MI3IURa-u82Bt-jH4cbcuVMN-DsNKfk46l8L16S5ep5UTwsE8tkPiaSZUqmwqHJM6u5U6Y2zmSp0mh53ujamFqpRtWu0TkTDmwjoHYp09pl1jAxJfzYa2MYhoiu2sa2N_G3YlAdrFT_VqqDlepkZQ_dHaEWEc-ANM0zYOIPQwRgCQ</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Santra, Avik</creator><creator>Kravets, Igor</creator><creator>Kotliar, Nazarii</creator><creator>Pandey, Ashutosh</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8156-3387</orcidid><orcidid>https://orcid.org/0009-0003-1500-2674</orcidid><orcidid>https://orcid.org/0009-0006-4693-6578</orcidid><orcidid>https://orcid.org/0009-0006-6156-2471</orcidid></search><sort><creationdate>202410</creationdate><title>Enhancing Bluetooth Channel Sounding Performance in Complex Indoor Environments</title><author>Santra, Avik ; Kravets, Igor ; Kotliar, Nazarii ; Pandey, Ashutosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c149t-4185463fea98c72f5abafa8657ec29d7baab55d5bfd7913f0cd30bf6177f8ca13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Bluetooth channel sounding (CS)</topic><topic>Channel estimation</topic><topic>Distance measurement</topic><topic>Estimation</topic><topic>home automation</topic><topic>Indoor environment</topic><topic>indoor localization</topic><topic>Phase measurement</topic><topic>Pipelines</topic><topic>range estimation</topic><topic>Sensor signal processing</topic><topic>smart lock</topic><topic>super-resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santra, Avik</creatorcontrib><creatorcontrib>Kravets, Igor</creatorcontrib><creatorcontrib>Kotliar, Nazarii</creatorcontrib><creatorcontrib>Pandey, Ashutosh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE sensors letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Santra, Avik</au><au>Kravets, Igor</au><au>Kotliar, Nazarii</au><au>Pandey, Ashutosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Bluetooth Channel Sounding Performance in Complex Indoor Environments</atitle><jtitle>IEEE sensors letters</jtitle><stitle>LSENS</stitle><date>2024-10</date><risdate>2024</risdate><volume>8</volume><issue>10</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2475-1472</issn><eissn>2475-1472</eissn><coden>ISLECD</coden><abstract><![CDATA[The Internet of Things (IoT) relies on accurate distance estimation between devices, crucial for localization in various applications. While received signal strength indicator (RSSI)-based ranging lacks precision and time-of-flight narrow band systems perform poorly, phase-based ranging emerges as the preferred choice for Bluetooth Low Energy (BLE). Infineon's BLE prototype and its performance with a novel processing pipeline based on the minimum variance distortionless response (MVDR) algorithm are presented in this letter. Our pipeline comprises subalgorithms for preprocessing, scene identification, feature selection, feature engineering, and postprocessing. Preprocessing includes zero distance calibration, low-pass filtering, and time history averaging. Scene identification adapts parameters to environmental conditions. MVDR algorithms enable high-resolution feature transformation to project the residual phase correction term to the range domain. Postprocessing includes a tracker and data-dependent adaptation. Postprocessing in conjunction with feature selection tracks the line of sight path, minimizing distance jitter. Our proposed pipeline achieves a <inline-formula><tex-math notation="LaTeX">\text{90}{\%}</tex-math></inline-formula> peak error of <inline-formula><tex-math notation="LaTeX">\leq</tex-math></inline-formula><inline-formula><tex-math notation="LaTeX">\text{1.6} \,\text{m}</tex-math></inline-formula> without data-dependent adaptation and <inline-formula><tex-math notation="LaTeX">\leq</tex-math></inline-formula><inline-formula><tex-math notation="LaTeX">\text{1.2} \,\text{m}</tex-math></inline-formula> with data-dependent adaptation and tracking, outperforming existing methods in the literature. This work demonstrates the potential of Infineon's BLE channel sounding for accurate range estimation in IoT applications.]]></abstract><pub>IEEE</pub><doi>10.1109/LSENS.2024.3456002</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8156-3387</orcidid><orcidid>https://orcid.org/0009-0003-1500-2674</orcidid><orcidid>https://orcid.org/0009-0006-4693-6578</orcidid><orcidid>https://orcid.org/0009-0006-6156-2471</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2475-1472
ispartof IEEE sensors letters, 2024-10, Vol.8 (10), p.1-4
issn 2475-1472
2475-1472
language eng
recordid cdi_ieee_primary_10669801
source IEEE Electronic Library (IEL)
subjects Accuracy
Bluetooth channel sounding (CS)
Channel estimation
Distance measurement
Estimation
home automation
Indoor environment
indoor localization
Phase measurement
Pipelines
range estimation
Sensor signal processing
smart lock
super-resolution
title Enhancing Bluetooth Channel Sounding Performance in Complex Indoor Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Bluetooth%20Channel%20Sounding%20Performance%20in%20Complex%20Indoor%20Environments&rft.jtitle=IEEE%20sensors%20letters&rft.au=Santra,%20Avik&rft.date=2024-10&rft.volume=8&rft.issue=10&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2475-1472&rft.eissn=2475-1472&rft.coden=ISLECD&rft_id=info:doi/10.1109/LSENS.2024.3456002&rft_dat=%3Ccrossref_RIE%3E10_1109_LSENS_2024_3456002%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10669801&rfr_iscdi=true