EAMT-SLAM: Edge-Aided Monocular Thermal Sensor SLAM in Low-Illumination Environments

In low-illumination environments, visible light images significantly degrade, and the simultaneous localization and mapping (SLAM) system based on visible cameras fails. In contrast, thermal sensors are not affected by scene lighting conditions and have become a promising alternative. However, due t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-10, Vol.24 (20), p.33371-33386
Hauptverfasser: Chen, Jie, Hou, Pengshuai, Zhao, Haoyu, Cao, Zhendong, Zhao, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33386
container_issue 20
container_start_page 33371
container_title IEEE sensors journal
container_volume 24
creator Chen, Jie
Hou, Pengshuai
Zhao, Haoyu
Cao, Zhendong
Zhao, Jie
description In low-illumination environments, visible light images significantly degrade, and the simultaneous localization and mapping (SLAM) system based on visible cameras fails. In contrast, thermal sensors are not affected by scene lighting conditions and have become a promising alternative. However, due to the problems of low contrast, high noise, and data interruption in thermal images, there are still many challenges in implementing thermal sensor SLAM. Therefore, this article proposes an edge-aided monocular thermal sensor SLAM system, called EAMT-SLAM, suitable for low illumination environments. First, the edge provides more feature associations to assist the SLAM system in initializing quickly and accurately. Subsequently, the saliency map is calculated based on the strong edge in the thermal image, and the weights are reasonably assigned to the feature points in the optimization process of pose estimation to obtain more accurate results. Finally, this article proposes an edge-guided loop detection method, which achieves higher accuracy and real-time performance compared with the appearance-based method, effectively ensuring the global consistency of SLAM. In addition, this article proposes a new thermal image processing method that can enhance image details and remove complex noise in real time, significantly improve the quality of thermal images, and broaden the application scope of the EAMT-SLAM system. The experimental results show that our method can obtain the highest quality thermal image under quantitative and qualitative evaluation, complete accurate loop detection, and finally realize accurate pose estimation in low-illumination environments.
doi_str_mv 10.1109/JSEN.2024.3452557
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10669221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10669221</ieee_id><sourcerecordid>10_1109_JSEN_2024_3452557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-f7aafddd8a463d6f3e49a84face74040cf03fa82f12cfd738322345eff5a04033</originalsourceid><addsrcrecordid>eNpNkM9KAzEYxIMoWKsPIHjIC6Tm7ybrbSmrVrZ66ArelrBJNLKbSNIqvr1d2oOnb-CbGZgfANcELwjB5e3Tpn5eUEz5gnFBhZAnYEaEUIhIrk4nzTDiTL6dg4ucPzEmpRRyBtq6Wrdo01TrO1ibd4sqb6yB6xhivxt0gu2HTaMe4MaGHBOcnNAH2MQftBqG3eiD3voYYB2-fYphtGGbL8GZ00O2V8c7B6_3dbt8RM3Lw2pZNagnXG2Rk1o7Y4zSvGCmcMzyUivudG8lxxz3DjOnFXWE9s5Iphil-3XWOaH3b8bmgBx6-xRzTtZ1X8mPOv12BHcTlm7C0k1YuiOWfebmkPHW2n_-oigpJewPCVVegg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>EAMT-SLAM: Edge-Aided Monocular Thermal Sensor SLAM in Low-Illumination Environments</title><source>IEEE Xplore</source><creator>Chen, Jie ; Hou, Pengshuai ; Zhao, Haoyu ; Cao, Zhendong ; Zhao, Jie</creator><creatorcontrib>Chen, Jie ; Hou, Pengshuai ; Zhao, Haoyu ; Cao, Zhendong ; Zhao, Jie</creatorcontrib><description>In low-illumination environments, visible light images significantly degrade, and the simultaneous localization and mapping (SLAM) system based on visible cameras fails. In contrast, thermal sensors are not affected by scene lighting conditions and have become a promising alternative. However, due to the problems of low contrast, high noise, and data interruption in thermal images, there are still many challenges in implementing thermal sensor SLAM. Therefore, this article proposes an edge-aided monocular thermal sensor SLAM system, called EAMT-SLAM, suitable for low illumination environments. First, the edge provides more feature associations to assist the SLAM system in initializing quickly and accurately. Subsequently, the saliency map is calculated based on the strong edge in the thermal image, and the weights are reasonably assigned to the feature points in the optimization process of pose estimation to obtain more accurate results. Finally, this article proposes an edge-guided loop detection method, which achieves higher accuracy and real-time performance compared with the appearance-based method, effectively ensuring the global consistency of SLAM. In addition, this article proposes a new thermal image processing method that can enhance image details and remove complex noise in real time, significantly improve the quality of thermal images, and broaden the application scope of the EAMT-SLAM system. The experimental results show that our method can obtain the highest quality thermal image under quantitative and qualitative evaluation, complete accurate loop detection, and finally realize accurate pose estimation in low-illumination environments.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3452557</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Image edge detection ; Loop detection ; low-illumination ; Noise ; Pose estimation ; Sensors ; Simultaneous localization and mapping ; thermal image processing ; Thermal noise ; thermal sensor simultaneous localization and mapping (SLAM) ; Thermal sensors</subject><ispartof>IEEE sensors journal, 2024-10, Vol.24 (20), p.33371-33386</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-f7aafddd8a463d6f3e49a84face74040cf03fa82f12cfd738322345eff5a04033</cites><orcidid>0000-0002-6086-9387 ; 0000-0003-1214-3191 ; 0000-0001-5540-086X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10669221$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10669221$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Hou, Pengshuai</creatorcontrib><creatorcontrib>Zhao, Haoyu</creatorcontrib><creatorcontrib>Cao, Zhendong</creatorcontrib><creatorcontrib>Zhao, Jie</creatorcontrib><title>EAMT-SLAM: Edge-Aided Monocular Thermal Sensor SLAM in Low-Illumination Environments</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In low-illumination environments, visible light images significantly degrade, and the simultaneous localization and mapping (SLAM) system based on visible cameras fails. In contrast, thermal sensors are not affected by scene lighting conditions and have become a promising alternative. However, due to the problems of low contrast, high noise, and data interruption in thermal images, there are still many challenges in implementing thermal sensor SLAM. Therefore, this article proposes an edge-aided monocular thermal sensor SLAM system, called EAMT-SLAM, suitable for low illumination environments. First, the edge provides more feature associations to assist the SLAM system in initializing quickly and accurately. Subsequently, the saliency map is calculated based on the strong edge in the thermal image, and the weights are reasonably assigned to the feature points in the optimization process of pose estimation to obtain more accurate results. Finally, this article proposes an edge-guided loop detection method, which achieves higher accuracy and real-time performance compared with the appearance-based method, effectively ensuring the global consistency of SLAM. In addition, this article proposes a new thermal image processing method that can enhance image details and remove complex noise in real time, significantly improve the quality of thermal images, and broaden the application scope of the EAMT-SLAM system. The experimental results show that our method can obtain the highest quality thermal image under quantitative and qualitative evaluation, complete accurate loop detection, and finally realize accurate pose estimation in low-illumination environments.</description><subject>Image edge detection</subject><subject>Loop detection</subject><subject>low-illumination</subject><subject>Noise</subject><subject>Pose estimation</subject><subject>Sensors</subject><subject>Simultaneous localization and mapping</subject><subject>thermal image processing</subject><subject>Thermal noise</subject><subject>thermal sensor simultaneous localization and mapping (SLAM)</subject><subject>Thermal sensors</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9KAzEYxIMoWKsPIHjIC6Tm7ybrbSmrVrZ66ArelrBJNLKbSNIqvr1d2oOnb-CbGZgfANcELwjB5e3Tpn5eUEz5gnFBhZAnYEaEUIhIrk4nzTDiTL6dg4ucPzEmpRRyBtq6Wrdo01TrO1ibd4sqb6yB6xhivxt0gu2HTaMe4MaGHBOcnNAH2MQftBqG3eiD3voYYB2-fYphtGGbL8GZ00O2V8c7B6_3dbt8RM3Lw2pZNagnXG2Rk1o7Y4zSvGCmcMzyUivudG8lxxz3DjOnFXWE9s5Iphil-3XWOaH3b8bmgBx6-xRzTtZ1X8mPOv12BHcTlm7C0k1YuiOWfebmkPHW2n_-oigpJewPCVVegg</recordid><startdate>20241015</startdate><enddate>20241015</enddate><creator>Chen, Jie</creator><creator>Hou, Pengshuai</creator><creator>Zhao, Haoyu</creator><creator>Cao, Zhendong</creator><creator>Zhao, Jie</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6086-9387</orcidid><orcidid>https://orcid.org/0000-0003-1214-3191</orcidid><orcidid>https://orcid.org/0000-0001-5540-086X</orcidid></search><sort><creationdate>20241015</creationdate><title>EAMT-SLAM: Edge-Aided Monocular Thermal Sensor SLAM in Low-Illumination Environments</title><author>Chen, Jie ; Hou, Pengshuai ; Zhao, Haoyu ; Cao, Zhendong ; Zhao, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-f7aafddd8a463d6f3e49a84face74040cf03fa82f12cfd738322345eff5a04033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Image edge detection</topic><topic>Loop detection</topic><topic>low-illumination</topic><topic>Noise</topic><topic>Pose estimation</topic><topic>Sensors</topic><topic>Simultaneous localization and mapping</topic><topic>thermal image processing</topic><topic>Thermal noise</topic><topic>thermal sensor simultaneous localization and mapping (SLAM)</topic><topic>Thermal sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Hou, Pengshuai</creatorcontrib><creatorcontrib>Zhao, Haoyu</creatorcontrib><creatorcontrib>Cao, Zhendong</creatorcontrib><creatorcontrib>Zhao, Jie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Jie</au><au>Hou, Pengshuai</au><au>Zhao, Haoyu</au><au>Cao, Zhendong</au><au>Zhao, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EAMT-SLAM: Edge-Aided Monocular Thermal Sensor SLAM in Low-Illumination Environments</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-10-15</date><risdate>2024</risdate><volume>24</volume><issue>20</issue><spage>33371</spage><epage>33386</epage><pages>33371-33386</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In low-illumination environments, visible light images significantly degrade, and the simultaneous localization and mapping (SLAM) system based on visible cameras fails. In contrast, thermal sensors are not affected by scene lighting conditions and have become a promising alternative. However, due to the problems of low contrast, high noise, and data interruption in thermal images, there are still many challenges in implementing thermal sensor SLAM. Therefore, this article proposes an edge-aided monocular thermal sensor SLAM system, called EAMT-SLAM, suitable for low illumination environments. First, the edge provides more feature associations to assist the SLAM system in initializing quickly and accurately. Subsequently, the saliency map is calculated based on the strong edge in the thermal image, and the weights are reasonably assigned to the feature points in the optimization process of pose estimation to obtain more accurate results. Finally, this article proposes an edge-guided loop detection method, which achieves higher accuracy and real-time performance compared with the appearance-based method, effectively ensuring the global consistency of SLAM. In addition, this article proposes a new thermal image processing method that can enhance image details and remove complex noise in real time, significantly improve the quality of thermal images, and broaden the application scope of the EAMT-SLAM system. The experimental results show that our method can obtain the highest quality thermal image under quantitative and qualitative evaluation, complete accurate loop detection, and finally realize accurate pose estimation in low-illumination environments.</abstract><pub>IEEE</pub><doi>10.1109/JSEN.2024.3452557</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6086-9387</orcidid><orcidid>https://orcid.org/0000-0003-1214-3191</orcidid><orcidid>https://orcid.org/0000-0001-5540-086X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-10, Vol.24 (20), p.33371-33386
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_10669221
source IEEE Xplore
subjects Image edge detection
Loop detection
low-illumination
Noise
Pose estimation
Sensors
Simultaneous localization and mapping
thermal image processing
Thermal noise
thermal sensor simultaneous localization and mapping (SLAM)
Thermal sensors
title EAMT-SLAM: Edge-Aided Monocular Thermal Sensor SLAM in Low-Illumination Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A47%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EAMT-SLAM:%20Edge-Aided%20Monocular%20Thermal%20Sensor%20SLAM%20in%20Low-Illumination%20Environments&rft.jtitle=IEEE%20sensors%20journal&rft.au=Chen,%20Jie&rft.date=2024-10-15&rft.volume=24&rft.issue=20&rft.spage=33371&rft.epage=33386&rft.pages=33371-33386&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3452557&rft_dat=%3Ccrossref_RIE%3E10_1109_JSEN_2024_3452557%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10669221&rfr_iscdi=true